Skip to main content

Development of Refined Homology Models: Adding the Missing Information to the Medically Relevant Neurotransmitter Transporters

  • Chapter
  • First Online:
Membrane Transport Mechanism

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 17))

Abstract

Neurotransmitter:sodium symporters are located on presynaptic neurons and terminate neurotransmission by removing the monoamine substrates from the synaptic cleft. Until very recently, only several conformational snapshots/structures of a bacterial homolog of neurotransmitter:sodium symporters, namely, the leucine/alanine transporter LeuT from Aquifex aeolicus, were available. However, this transporter shares only 21b % overall sequence identity with its human homologs. In this chapter, we describe how a model can be developed from a template with such low identity. The effort of model building will strongly depend on the purpose. We discuss this process and focus on the important steps that allowed us to obtain a model which can be used for molecular dynamics simulations. Furthermore, we also highlight the inherent limitations of the proposed approaches. Prediction of ligand binding brings in additional complexity. Therefore, experimental scrutiny of the resulting models is a key component to successful validation. We describe two specific examples: model building of the dopamine transporter and ligand docking to the serotonin transporter. We evaluate our modeling approach by direct comparison of our models to the recently published first eukaryotic neurotransmitter:sodium symporter, the drosophila melanogaster DAT transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

The financial support from the Austrian Science Fund (FWF) project “Transmembrane Transporters in Health and Disease” (SFB F35) and the DK + project “Ion Channels and Transporters as Molecular Drug Targets” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stockner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stockner, T., Jurik, A., Weissensteiner, R., Freissmuth, M., Ecker, G.F., Sitte, H.H. (2014). Development of Refined Homology Models: Adding the Missing Information to the Medically Relevant Neurotransmitter Transporters. In: Krämer, R., Ziegler, C. (eds) Membrane Transport Mechanism. Springer Series in Biophysics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53839-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53839-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53838-4

  • Online ISBN: 978-3-642-53839-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics