Skip to main content

Vortex Lift at a Very High Angle of Attack with Massively Separated Unsteady Flow

  • Conference paper
Fluid Dynamics of High Angle of Attack

Summary

Massive unsteady flow separation is inevitable as the angle of attack increases to a very high level. Very high lift is liard to achieve with todays existing wing configurations. Introducing controlled unsteady flow to modulate natural and disordered unsteadiness can break through this “unsteady separation barrier.” But the control must integrate with novel designs of wing configuration for basic steady flow. Some configurations may work well only after excitation is imposed. Such an integration falls into the general category of vortex control. In this paper, the underlying physics for steady and unsteady vortex controls relevant to high lift are addressed. Requirements for possible basic wing configurations pertinent to unsteady excitations and the recent progress of vortex control by forcing waves are addressed and reviewed. We believe that a certain combination of advanced excitation techniques and special wing configurations that provide a comfortable “seat” for lift-producing vortices and “room” for wave-vortex resonance will bring a new generation of aeronautical flow type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nguyan, L.T.: SAE Paper 89–2235 (1989).

    Google Scholar 

  2. Rao, D.M.; Campbell, J.F.: Progr. Aerospace Sci. 24 (1987) 173–244.

    Article  Google Scholar 

  3. Rao, D.M.: AGARD-CP-494 (1991) 25.1–25.12.

    Google Scholar 

  4. Lighthill, M.J.: J. Fluid Mech. 60 (1973) 1–17.

    Article  MATH  Google Scholar 

  5. Hertel, H.: Structure, Form, and Movement. Reinhold Publishing 1966.

    Google Scholar 

  6. Wu, J.M.: Intern. Aviation 8 (1988) 2.

    Google Scholar 

  7. Wu, J.Z.; Vakili, A.D.; Wu, J.M.: Progr. Aerospace Sci. 28 (1991) 73431.

    Article  Google Scholar 

  8. Maresca, C.; Favier, D.; Robert, J.: J. Fluid Mech. 92 (1979) 671–690.

    Article  Google Scholar 

  9. Gursal, I.; Ho, C.-M.: AIAA.1. 30 (1992) 1117–1119.

    Article  Google Scholar 

  10. Wu, J.Z.; Ma, H.Y.; Zhou, M.D.: Introduction lo Vorticity and Vortex Dynamics. Higher Education Press, 1992.

    Google Scholar 

  11. Lighthill, M.J.: In Rosenhead, L. (ed.) Laminar Boundary Layers. Oxford Univ. Press 1963, 46–113.

    Google Scholar 

  12. Wu, J.Z.; Wu, J.M.; Wu, C.J.: In Ilasimoto, I1.; Kamble, T. (eds.) Vortex Motion,North-Holland (1988), 203–208.

    Google Scholar 

  13. Wu, J.Z.; Wu, J.M.: UTSI Rept. 92/04 (1992).

    Google Scholar 

  14. Wu, J.Z.; Wu, J.M.: AIAA Paper 91–0617 (1991).

    Google Scholar 

  15. Erickson, G.E.: AFWAL-TR-80–3143 (1981).

    Google Scholar 

  16. Greenspan, H.P.: The Theory of Rotating Fluid. Cambridge Univ. Press 1968.

    Google Scholar 

  17. Leibovich, S.: AIAA J. 22 (1984) 1192–1206.

    Article  Google Scholar 

  18. Arnold, V.I.: Prikl. Math. Mech. 29 (1965), 846–851.

    Google Scholar 

  19. Arnold, V.I.: Izv. Ucheln. Zaved. Math. 54, No. 5 (1966) 3–5.

    Google Scholar 

  20. Holm, D.D.; Marsden, J.E.; Ratiu, T.; Weinstein, A.: Phys. Rep. 123 (1985) 1–116.

    Article  MATH  MathSciNet  Google Scholar 

  21. Rouclion, P.: Ear. J. Mech., B/Fluids 10 (1991) 651–661.

    Google Scholar 

  22. Serrin, J.: In Flügge, S. (ed.), Ilankbuck der Physik VIII/1 (1959) 125–263.

    Google Scholar 

  23. Dritschel, D.G.: J. Fluid Mech. 191 (1988) 575–581.

    Article  MATH  Google Scholar 

  24. Kloosterziel, R.C.; Carnevale, C.F.: Formal stability of circular vortices, 1992. Submitted for publication.

    Google Scholar 

  25. Vallis, G.K.; Carnevale, G.F.; Young, W.R.: J. Fluid Alech. 207 (1989) 133–152.

    Article  MATH  MathSciNet  Google Scholar 

  26. Carnevale, C.F.; Vallis, G.K.: J.Fluid Mech. 213 (1990) 549–571.

    Article  MathSciNet  Google Scholar 

  27. Lamb, H.: Hydrodynamics, Dover 1932.

    Google Scholar 

  28. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Univ. Press 1967.

    MATH  Google Scholar 

  29. Gustafson, K.E.: In Gustafson, K.E.; Sethian, J.A. (eds.) Vortex Methods and Vortex Motion. SIAM (1991) 95–141.

    Google Scholar 

  30. Ma, H.Y.; Jin, X.: Proc. 5M Chinese Conf. Comp. Fluid Mech., Anhui, China, April 26–29, 1990.

    Google Scholar 

  31. Bearman, P.W.: Ann. Rev. Fluid Mech. 16 (1984) 195–222.

    Article  Google Scholar 

  32. Iluerre, P.; Monkewitz, P.A.: Ann. Rev. Fluid Alech. 22 (1990) 473–537.

    Article  Google Scholar 

  33. Oertel, H. Jr.: Ann. Rev. Fluid Alech. 22 (1990) 539–564.

    Article  MathSciNet  Google Scholar 

  34. Ito, C.-M.; Iluerre, P.: Ann. Rev. Fluid Mech. 16 (1984) 365–424.

    Article  Google Scholar 

  35. Roos, F.M.; Kegelman, J.T.: AIAA J. 24 (1986) 1956–1963.

    Article  Google Scholar 

  36. Yao, M.F.; Jiang, L.P.; Wu, J.Z.; Ma, H.Y.; Pan, J.Y.; Cai, H.J.: AIAA Paper 89–1000 (1989).

    Google Scholar 

  37. Wu, J.Z.; Wu, X.H.; Wu, J.M.: Streaming vorticity flux from oscillating walls with finite amplitude. Submitted for publication (1992).

    Google Scholar 

  38. Taneda, S.: J. Phys. Soc. Japan 45 (1978) 1038–1043.

    Article  Google Scholar 

  39. Salfman, P.O.; Sheffield, J.S.: Studies Appl. Math. 57 (1977) 107–117.

    Google Scholar 

  40. Wu, J.M.; Wu, J.Z.; Wu, C.J.; Vakili, A.D.: In Miller, J.A.; Telionis, D.P. (eds.) Intern. Symp. Nonsteady Fluid Dyn. SIAM 1990, 357–368.

    Google Scholar 

  41. Wu, J.M.; Wu, J.Z.: Eraslan, A.11.; Moore, K.J.: A natural viscous periodic vortex flow over flexible wall with traveling waves. Submitted for publication (1992).

    Google Scholar 

  42. Vakili, A.D.; Wu, J.M.; Bhat, M.K.: SAE Paper 881424 (1988).

    Google Scholar 

  43. Pan, J.Z.; Mo, J.D.; Wu, J.M.: Acta Aerodyn. Sinica 7 (1988) 344–350.

    Google Scholar 

  44. Abuja, K.K.; Burrin, R.H.: AIAA Paper 84–2298 (1984).

    Google Scholar 

  45. Wu, X.H.; Wu, J.Z.; Wu, J.M.: AIAA Paper 91–0545 (1991).

    Google Scholar 

  46. Wu, X.H.: MS Thesis, UTSI, 1991.

    Google Scholar 

  47. Reynolds, W.C.; Carr, L.W.: AIAA Paper 85–0527 (1985).

    Google Scholar 

  48. Hou, Y.L.; Lu, Q.Z.: Acta Aerodyn. Sinica 10 (1992) 140–195.

    Google Scholar 

  49. Zhou, M.D.: In High Angle of Atlack/Unsteady Flow Phenomena,UTSI Short Course, June 1992.

    Google Scholar 

  50. Pan, J.Y.; Pan, X.L.: Acta Aerodyn. Sinica 10 (1992) 135–138.

    Google Scholar 

  51. Lessen, M.; Singh, P.J.; Paillet, F.: J. Fluid Mech. 63 (1974) 753–763.

    Article  MATH  Google Scholar 

  52. Spedding, G.R.; Maxworthy, T.; Rignot, E.: Proc. 2nd AI•’OS’R Workshop on Unsteady and Separated Flows, Colorado Springs, CO, USA, July 1987.

    Google Scholar 

  53. Kandil, O.A.; Salman, A.A.: AIAA Paper 91–0435 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, JM., Wu, JZ. (1993). Vortex Lift at a Very High Angle of Attack with Massively Separated Unsteady Flow. In: Kawamura, R., Aihara, Y. (eds) Fluid Dynamics of High Angle of Attack. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-52460-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-52460-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52462-2

  • Online ISBN: 978-3-642-52460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics