Skip to main content

Application of Noble Gases to the Viability of CO2 Storage

  • Chapter
The Noble Gases as Geochemical Tracers

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Unequivocable evidence for warming of the climate system is a reality. An important factor for reducing this warming is mitigation of anthropogenic CO2 in the atmosphere. This requires us to engineer technologies for capture of our carbon emissions and identify reservoirs for storing these captured emissions. This chapter reviews advances made in understanding multiphase interactions and processes operating in a variety of subsurface reservoirs using noble gases. We begin by discussing the types of reservoir available for carbon storage and the mechanisms of viable CO2 storage, before summarising the physical chemistry involved in data interpretation and the sampling/sample storage techniques and requirements critical to successful sample collection. Theory of noble gas partitioning is interspersed with examples from a variety reservoirs to aid our knowledge of long term CO2 storage in the subsurface. These include hydrocarbon reservoir and natural CO2 reservoirs. In these examples we show how good progress has been made in using noble gases to explain the fate of CO2 in the subsurface, to quantify the extent of groundwater interaction and to understand CO2 behaviour after injection into oil fields for enhanced oil recovery. We also present recent work using noble gases for monitoring of subsurface CO2 migration and leakage in CO2 rich soils, CO2 rich springs and groundwaters. Noble gases are chemically inert, persistent and environmentally safe and they have the potential to be extremely useful in tracing migration of CO2. It is imperative that the many upcoming pilot CO2 injection studies continue to investigate the behaviour of noble gases in the subsurface and develop suitable noble gas monitoring strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allis R, Bergfeld D, Moore J, McClure K, MorganC, Chidsey T, Heath JE, McPherson B (2005) Implications of results from CO2 flux surveys over known CO2 systems for long-term monitoring.In: Fourth annual conference on carbon capture and sequestration, DOE/NETL, 2–5 May 2005

    Google Scholar 

  • Allis R, Chidsey T, GwynnW, Morgan C, White S, Adams M, Moore J (2001) Natural CO2 reservoirs on the colorado plateau and southern rocky mountains: candidates for CO2 sequestration. DOE/NETL: 1st National conference of carbon sequestration. Procedings Volume

    Google Scholar 

  • Baines SJ, Worden RH (2004a) Geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. The Geological Society of London, London, pp 1–6

    Google Scholar 

  • Baines SJ, Worden RH (2004b) The long term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Bains SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London, pp 59–85

    Google Scholar 

  • Ballentine CJ, O’Nions RK, Coleman CL (1996) A magnus opus: helium, neon and argon isotopes in a North Sea oilfield. Geochimica Cosmochim Acta 60:831–849

    Google Scholar 

  • Ballentine CJ (1997) Resolving the mantle He/Ne and crustal 21-Ne/22-Ne in well gases. Earth Planet Sci Lett 152:233–249

    Google Scholar 

  • Ballentine CJ, Schoell M, Coleman D, Cain BA (2001) 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin. Nature 409:327–331

    Google Scholar 

  • Ballentine CJ, Burgess R, MartyB (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli DR, Ballentine CJ, Weiler R (eds) Noble gases in geochemistry and cosmochemistry, pp 539–614

    Google Scholar 

  • Ballentine CJ, BurnardPG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli DR, BallentineCJ, Weiler R (eds) Noble gases in geochemistry and cosmochemistry, pp 481–538

    Google Scholar 

  • Ballentine CJ, Marty B, Lollar BS, Cassidy M (2005) Neon isotopes constrain convection and volatile origin in the Earth’s mantle. Nature 433:33–38

    Google Scholar 

  • Battani A, Deville E, Faure JL, Jeandel E, Noirez S, Tocqué E, Benoît Y, Schmitz J, Parlouar D, Sarda P, Gal F, Le Pierres K, Brach M, Braibant G, Beny C, Pokryszka Z, Charmoille A, Bentivegna G, Pironon J, de Donato P, Garnier C, Cailteau C, Barrès O, Radilla G, Bauer A (2010) Geochemical study of natural CO2 emissions in the French Massif Central: how to predict origin, processes and evolution of CO2 leakage. Oil Gas Sci Technol: Rev IFP 65(4):615–633

    Google Scholar 

  • Battani A, Sarda P, Prinzhofer A (2000) Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin. Earth Planet Sci Lett 181(1–2):229–249

    Google Scholar 

  • Becker J (2005) Quantification of Himalayan Metamorphic CO2 fluxes: impact on global carbon budgets. PhD thesis, University of Cambridge, Cambridge. UK

    Google Scholar 

  • Bosch A, Mazor E (1988) Natural-gas association with water and oil as depicted by atmodspheric Noble Gases—Case studies from the southeastern mediterranean coastal-plain. Earth Planet Sci Lett 87(3):338–346

    Google Scholar 

  • Bradshaw J, Boreham C, La Pedalina F (2004) Storage retention time of CO2 in sedimentary basins; examples from petroleum systems. In: Rubin E, Keith D, Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the Ocean disposal of fossil fuel CO2. Science 284:943–945

    Google Scholar 

  • Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the Ocean disposal of fossil fuel CO2. Science 284(5416):943–945. doi:10.1126/science.284.5416.943

    Article  Google Scholar 

  • Broadhead RF (1998) Natural accumulations of carbon dioxide in the New Mexico region—Where are they, how do they occur and what are the uses for CO2? Lite Geol 20:2–6

    Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12):D12106 doi:10.1029/2005jd006548

  • Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of “Popping Rock”: implications for primordial Noble Gases in Earth. Science 276:568–570

    Google Scholar 

  • Burnard PG, Graham DW, Farley KA (2002) Mechanisms of magmatic gas loss along the Southeast Indian Ridge and the Amsterdam -St. Paul Plateau. Earth Planet Sci Lett 203:131

    Google Scholar 

  • Casanova J, Bodénan F, Négrel P, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cézallier hydrothermal springs (Massif Central, France). Sed Geol 126(1–4):125–145. doi:10.1016/s0037-0738(99)00036-6

    Article  Google Scholar 

  • Castro MC, Goblet P (2003) Calibration of regional groundwater flow models: working toward a better understanding of site-specific systems. Water Resouces Res 39:1172

    Google Scholar 

  • Castro MC, Goblet P, Ledoux E, Violette S, de Marsily G (1998) Noble gases as natural tracers of water circulation in the Paris Basin 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resouces Res 34:2467–2483

    Google Scholar 

  • Cathles LM, Schoell M (2007) Modeling CO2 generation, migration and titration in sedimentary basins. Geofluids 7:441–450

    Google Scholar 

  • Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in circum Pacific volcanic gases. In: Alexander EC, Ozima M (eds) Terrestrial rare gases. Japan Science Societies Press, Tokyo, pp 3–16

    Google Scholar 

  • Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotopes and the existence of a gas phase in the evolution of carbonate groundwaters. Geochim Cosmochim Acta 38:1147–1184

    Google Scholar 

  • Drescher J, Kirsten T, Schafer K (1998) The rare gas inventory of the continental crust, recovered by the KTB continental deep drilling project. Earth Planet Sci Lett 119:271–281

    Google Scholar 

  • EU (2009) Directive 2009/31/EC of the European Parliament and of the Council on the geological storage of carbon dioxide. Official J Eur Union L140:114–136

    Google Scholar 

  • Fanale FP, Cannon WA (1971) Physical adsorption of rare gases on terrigenous sediments. Earth Planet Sci Lett 11:362–368

    Google Scholar 

  • Farley KA, Craig H (1994) Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochim Cosmochim Acta 58:2509–2517

    Google Scholar 

  • Fitton JG, James D, Leeman WP (1991) Basic magmatism associated with late cenozoic extension in the Western United-States—Compositional variations in space and time. J Geophys Res Solid Earth Planet 96(B8):13693–13711

    Google Scholar 

  • Fontes J-Ch, Andrews JN, Walgenwitz F (1991) Évaluation de la production naturelle in situ d’argon-36 via le chlore-36: implications géochimiques et géochronologiques. C. R. Acad. 856 Paris 313, Série II, pp 649–654

    Google Scholar 

  • Gautheron C, Moreira M (2002) Helium signature of the subcontinental lithospheric mantle. Earth Planet Sci Lett 199(1–2):39

    Google Scholar 

  • Gilfillan SMV, Ballentine CJ, Holland G, Sherwood Lollar B, Stevens S, Schoell M, Cassidy M (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim Cosmochim Acta 72:1174–1198

    Google Scholar 

  • Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618

    Google Scholar 

  • Gilfillan SMV, Wilkinson M, Haszeldine RS, Shipton ZK, Nelson ST, Poreda RJ (2011) He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. Int J Greenhouse Gas Control 5(6):1507–1516. doi:10.1016/j.ijggc.2011.08.008

    Article  Google Scholar 

  • Gilfillan SMV, Haszeldine RS 2011 Report of noble gas, carbon stable isotope and HCO3- measurements from the Kerr Quarter and surrounding area, Goodwater, Saskatchewan. In: Sherk GW (ed) The Kerr investigation: final report, vol. IPAC-CO2 Research Inc, Regina

    Google Scholar 

  • Goldberg DS, Takahashi T, Slagle AL (2008) Carbon dioxide sequestration in deep-sea basalt. Proc Nat Acad Sci 105:9920–9925

    Google Scholar 

  • Graham D (2002) Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean Island Basalt: characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry 47:247–317

    Google Scholar 

  • Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    Google Scholar 

  • Heath JE (2004) Hydrogeochemical characterization of CO2 charged fault zones: the Little Grand Wash and Salt Wash fault zones, Emery and Grand counties, Utah. PhD thesis Utah State University, Logan

    Google Scholar 

  • Hilton D, Fischer T, Marty B (2002) Noble gases and volitile recycling at subduction zones. In: Porcelli DR, Ballentine CJ, Weiler R (eds) Noble gases in geochemistry and cosmochemistry 47:319–370

    Google Scholar 

  • Hiyagon H, Kennedy BM (1992) Noble gases in CH4-rich gas fields, Alberta, Canada. Geochimica Cosmochimica Acta 56:1569–1589

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441(7090):186–191

    Google Scholar 

  • Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326:1522–1525

    Google Scholar 

  • House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Nat Acad Sci 103:12291–12295

    Google Scholar 

  • IEA (2009) Technology roadmap: carbon capture and storage, Paris, p. www.iea.org

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment: report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Jenden PD, Hilton DR, Kaplan IR, Craig H (1993) Abiogenic hydrocarbons in and mantle helium in oil and gas fields. In: Howell DG (ed) The future of energy gases, U.S. Geological Survey Professional Paper 1570. U.S. Geological Survey, pp 31–56

    Google Scholar 

  • Kennedy BM, Hiyagon H, Reynolds JH (1990) Crustal neon—A striking uniformity. Earth Planet Sci Lett 98:277–286

    Google Scholar 

  • Kennedy BM, Torgersen T, van Soest MC (2002) Multiple atmospheric noble gas components in hydrocarbon reservoirs: a study of the Northwest Shelf, Delaware Basin, SE New Mexico. Geochim Cosmochim Acta 66:2807–2822

    Google Scholar 

  • Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34:577–580

    Google Scholar 

  • Kipfer R, Aeschbach-Gertig W, Peeters F, StuteM (2002) Noble gases in lakes and groundwaters, noble gases in geochemistry and cosmochemistry, pp 615–700

    Google Scholar 

  • Klara SM, Srivastava RD, McIlvried HG (2003) Integrated collaborative technology, development program for CO2 sequestration in geologic formations—United States Department of Energy R&D. Energy Convers Manage 44:2699–2712

    Google Scholar 

  • Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53(1):41–54. doi:10.1016/0012-821x(81)90024-8

    Article  Google Scholar 

  • Lafleur P (2010) Geochemical Soil Gas Survey—a site investigation of SW30-5-13-W2 M, Weyburn Field, Saskatchewan. Petro-Find Geochem Ltd, Saskatoon

    Google Scholar 

  • Mackintosh SJ, Ballentine CJ (2012) Using 3He/4He isotope ratios to identify the source of deep reservoir contributions to shallow fluids and soil gas. Chem Geol 304–305:142–150. doi:10.1016/j.chemgeo.2012.02.006

    Article  Google Scholar 

  • Marland G, Boden TA, Andres RJ (2008) Global, regional, and national fossil fuel CO2 emissions, trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA

    Google Scholar 

  • Marland G, Schlamadinger B (1999) The Kyoto Protocol could make a difference for the optimal forest-based CO2 mitigation strategy: some results from GORCAM. Environ Sci Policy 2:111–124

    Google Scholar 

  • Marty B, Jambon A (1987) C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet Sci Lett 83:16–26

    Google Scholar 

  • Marty B, O’Nions RK, Oxburgh ER, Martel D, Lombardi S (1992) Helium isotopes in alpine regions. Tectonophysics 206:71–78

    Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63(21):3619–3633. doi:10.1016/s0016-7037(99)00169-6

    Article  Google Scholar 

  • Maughan EK (1988) Geology and petroleum potential, Colorado Park Basin Province, North-Central Colorado. US Geological Survey Open-File Report 88-450 E

    Google Scholar 

  • Mazor E (1972) Paleotemperatures ans other hydrological parameters deduced from noble gases dissolved in groundwater, Jordan Rift Valley, Israel. Geochimica Cosmochimica Acta 36:1321–1326

    Google Scholar 

  • Moore J, Adams M, Allis R, Lutz S, Rauzi S (2005) Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: an example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chem Geol 217:365

    Google Scholar 

  • Moreira M, Kunz J, Allegre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the Upper Mantle. Science 279:1178–1181

    Google Scholar 

  • Nimz GJ, Hudson GB (2005) The use of noble gas isotopes for monitoring leakage of geologically stored CO2. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations. Elsevier, Amsterdam, pp 1113–1128

    Google Scholar 

  • O’Nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90(3):331–347

    Google Scholar 

  • Oxburgh ER, O’Nions RK, Hill RI (1986) Helium isotopes in sedimentary basins. Nature 324:632–635

    Google Scholar 

  • Ozima M, Podosek PA (2001) Noble gas geochemistry, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pashin JC, McIntyr MR (2003) Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: implications for carbon sequestration and enhanced coalbed methane recovery. Int J Coal Geol 54:167–183

    Google Scholar 

  • Petroleum Technology Research Centre 2011 Response to a soil gas study by Petro-Find Geochem Ltd

    Google Scholar 

  • Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France—implications for the origin of fluids and constraints on oil-water-gas interactions. Geochimica Cosmochimica Acta 59:3389–3404

    Google Scholar 

  • Pinti DL, Marty B (1998) Separation of noble gas mixtures from petroleum and their isotopic analysis by mass spectrometry. J Chromatogr A 824(1):109–117

    Google Scholar 

  • Pinti DL, Wada N, Matsuda J (1999) Neon excesses in pumice: volcanological implications. J Volcanol Geoth Res 88:279–289

    Google Scholar 

  • Podosek PA (1980) Sedimentary noble gases. Geochim Cosmochim Acta 44:1875–1884

    Google Scholar 

  • Porcelli D, Woolum D, Cassen P (2001) Deep earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet Sci Lett 193:237–251

    Google Scholar 

  • Porcelli D, Ballentine CJ (2002) Models for the distribution of terrestrial noble gases and evolution of the atmosphere. Reviews in Mineralogy and Geochemistry 47:411–480

    Google Scholar 

  • Porcelli D, Ballentine CJ, Wieler R (2002) An overview of noble gas—Geochemistry and cosmochemistry, noble gases in geochemistry and cosmochemistry, pp 1–19

    Google Scholar 

  • Rahmstorf S (2010) A new view on sea level rise. Nat Rep Clim Change 4:44–45

    Google Scholar 

  • Raistrick M, Mayer B, Shevalier M, Perez RJ, Hutcheon I, Perkins EH, Gunter WD (2006) Using chemical and isotopic data to quantify inoic trapping of carbon dioxide in oil field brines. Environ Sci Technol 40:6744–6749

    Google Scholar 

  • Rauzi SL (1999) Carbon dioxde in the St. Johns—Springerville Area, Apache County, Arizonia. Arizonia Geological Survey, Open-File Report 99-2

    Google Scholar 

  • Sarda P, Battani A, Prinzhofer A (2000) The 20Ne/36Ar ratio as a tracer for ancient oil: the oil–water and gas-water double distillation model. In: Goldschimidt 2000 vol 5(2). Cambridge Publications, Cambridge, p 876

    Google Scholar 

  • Sarda P, Staudacher T, Allègre CJ et al (1985) 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet Sci Lett 72:357–375

    Google Scholar 

  • Sherwood Lollar B, Ballentine CJ (2009) Insights into deep carbon derived from noble gases. Nat Geosci 2:543–547

    Google Scholar 

  • Sherwood Lollar B, Ballentine CJ, O’Nions RK (1997) The fate of mantle-derived carbon in a continental sedimentary basin: integration of C/He relationships and stable isotope signatures. Geochim Cosmochim Acta 61:2295–2308

    Google Scholar 

  • Sherwood Lollar B, O’Nions RK, Ballentine CJ (1994) Helium and neon isotope systematics in carbon dioxide-rich and hydrocarbon-rich gas reservoirs. Geochim Cosmochim Acta 58:5279

    Google Scholar 

  • Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation. Org Geochem 30:813–820

    Google Scholar 

  • Shipton ZK, Evans JP, Kirschner D, Kolesar PT, Williams AP, J H (2004) Analysis of leakage through ‘low-peameability’ faults from natural reservoirs in the Colorado Plateau, east-central Utah. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London, pp 43–58

    Google Scholar 

  • Spycher N, Pruess K (2005) CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning Chloride Brines at 12–100°C and up to 600 bar. 69(13):3309

    Google Scholar 

  • Stevens SH, Fox C, White T, Melzer S (2006) Natural CO2 analogs for Carbon Sequestration. Final Report for USDOE

    Google Scholar 

  • Tolstikhin IN, Lehmann BE, Loosli HH, Gautschi A (1996) Helium and argon isotopes in rocks, minerals, and related groundwaters: a case study in northern Switzerland. Geochim Cosmochim Acta 60:1497–1514

    Google Scholar 

  • Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, (i): an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218

    Google Scholar 

  • Torgersen T, Kennedy B, van Soest M (2004) Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet Sci Lett 226:477–489

    Google Scholar 

  • Torgersen T, Kennedy BM (1999) Air-Xe enrichments in Elk Hills oil field gases: role of water in migration and storage. Earth Planet Sci Lett 167:239–253

    Google Scholar 

  • Treiloff M, Kunz J, Clague DA, Harrison D, Allegre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038

    Google Scholar 

  • Trull T, Nadeau S, Pineau F, Polve M, Javoy M (1993) C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth Planet Sci Lett 118:43

    Google Scholar 

  • Wilkinson M, Gilfillan SMV, HaszeldineRS, BallentineCJ (2010) Plumbing the depths: testing natural tracers of subsurface CO2 origin and migration, Utah. In: Grobe M, PashinJC, DodgeRL (eds) Carbon dioxide sequestration in geological media—State of the science. AAPG Studies

    Google Scholar 

  • Woodward LA (1983) Geology and hydrocarbon potential of the raton basin, New Mexico. In: Fassett JE (ed) Oil and gas fields of the four corners area, vol 3. Four Corners Geological Society, pp 789–799

    Google Scholar 

  • Wycherley H, Fleet A, Shaw H (1999) Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins. Mar Pet Geol 16:489–494

    Google Scholar 

  • Zartman RE, Wasserburg GJ, Reynolds JH (1961) Helium, argon and carbon in some natural gases. J Geophys Res 66:277–306

    Google Scholar 

  • Zhou Z, Ballentine CJ, Kipfer R, Schoell M, Thibodeaux S (2005) Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim Cosmochim Acta 69:5413–5428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holland, G., Gilfillan, S. (2013). Application of Noble Gases to the Viability of CO2 Storage. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_8

Download citation

Publish with us

Policies and ethics