Skip to main content

Noble Gases as Environmental Tracers in Sediment Porewaters and Stalagmite Fluid Inclusions

  • Chapter

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

In well-studied aquatic systems such as surface waters and groundwater, noble gases are used extensively as natural tracers to reconstruct palaeoenvironmental conditions, to study transport and mixing, and to identify the geochemical origin of geogenic fluids. It has been suggested that less well-studied aquatic systems such as the porewaters of lacustrine and oceanic sediments and the fluid inclusions present in stalagmites might also be suitable as noble gas archives for environmental studies, but until recently the lack of adequate experimental techniques had hindered the development of noble gas geochemistry in these systems. This chapter reviews recent technical advances in this field and describes the scientific applications that these advances have made possible. The porewaters of lacustrine and oceanic sediments are now well established as noble gas archives in studies of temperature, salinity and mixing conditions that prevailed in the overlying water body in the past, as well as in studies of the transport and origin of solutes and pore fluids in the sediment. The geochemistry of noble gases in stalagmite fluid inclusions is still in the early stages of development. However, the results available to date suggest that stalagmite fluid inclusions have great potential as a noble gas archive in reconstructing palaeoclimatic conditions near caves with suitable stalagmites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adkins J, McIntyre K, Schrag P (2002) The salinity, temperature, and \(\delta^{18}\text{O}\) of the glacial deep ocean. Science 298:1769–1773. doi:10.1126/science.1076252

    Google Scholar 

  • Aeppli C, Hofstetter TB, Amaral HIF, Kipfer R, Schwarzenbach RP, Berg M (2010) Quantifying in-situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44(10):3705–3711. doi:10.1021/es903895b

    Article  Google Scholar 

  • Aeschbach-Hertig W, Solomon DK (2012) Noble gas thermometry in groundwater hydrology. In: Burnard PG (ed) The Noble Gases as geochemical tracers. Advances in Isotope Geochemistry Springer, New York.

    Google Scholar 

  • Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35(9):2779–2792. doi:10.1029/1999WR900130

    Google Scholar 

  • Amaral H, Berg M, Brennwald MS, Hofer M, Kipfer R (2010) \(^{\rm13}\)C/\(^{\rm12}\)C analysis of ultra-trace amounts of volatile organic contaminants in groundwater by vacuum extraction. Environ Sci Technol 44:1023–1029. doi:10.1021/es901760q

    Google Scholar 

  • Austin JA, Schlager W, Comet PA, Droxler AW, Eberli GP, Fourcade E, Freeman L, Fulthorpe C, Harwood G, Kuhn G, Lavoie D, Leckie M, Melillo AJ, Moore A, Mullins HT, Ravenne C, Sager WW, Swart P, Verbeek JW, Watkins DK, Williams C (1986) Site 628: Little Bahama Bank. In: Proceedings of the Ocean drilling program, part A: initial reports, College Station, TX (Ocean Drilling Program), vol 101, pp 213–270

    Google Scholar 

  • Ayliffe LK, Turner G, Burnard PG (1993) Noble gas contents of speleothem inclusion fluids: potential as indicators of precipitation temperature. In: Terra Nova Abstracts, vol 5, p 646

    Google Scholar 

  • Badertscher S, Fleitmann D, Cheng H, Edwards LR, Göktürk OM, Zumbühl A, Leuenberger M, Tüysüz O (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geosci 4:236–239. doi:10.1038/NGEO1106

    Article  Google Scholar 

  • Badertscher SV (2007) Charakterisierung von Einschlüssen in Stalagmiten zur Bestimmung der Paläotemperatur. Master’s thesis, ETH Zürich, Switzerland

    Google Scholar 

  • Badertscher SV, Scheidegger Y, Leuenberger M, Nyfeler P, Fleitmann D, Wieler R, Kipfer R (2007) Trace gas content in air inclusions in speleothems as a new paleoclimate archive. In: Geophysical research abstracts, 4th EGU general assembly, European Geosciences Union, Vienna, Austria, vol 9, p A0491

    Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 481–538

    Google Scholar 

  • Ballentine CJ, Hall CM (1999) Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water. Geochim Cosmochim Acta 63(16):2315–2336. doi:10.1016/S0016-7037(99)00131-3

    Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in cosmochemistry and geochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 539–614

    Google Scholar 

  • Barnes R (1973) An in situ interstitial water sampler for use in unconsolidated sediments. Deep-Sea Res 20:1125–1128. doi:10.1016/0011-7471(73)90026-0

    Google Scholar 

  • Barnes RO (1979) Operation of the IPOD in situ pore water sampler. In: Sibuet J, Ryan W (eds) Initial reports of the Deep Sea Drilling Project, vol 47, part 2, DSDP, Washington (U.S. Govt. Printing Office), pp 19–22

    Google Scholar 

  • Barnes RO (1987) Fluid kinematics, fluid residence times, and rock degassing in oceanic crust determined from noble gas contents of Deep Sea Drilling Project pore waters. J Geophys Res 92(B12):12491–12506

    Google Scholar 

  • Barnes RO (1988) ODP in-situ fluid sampling and measurement: a new wireline tool. In: Mascle A, Moore J (eds) Proceedings of the Ocean Drilling Program, initial reports (Part A), vol 110. ODP, College Station TX, pp 55–63

    Google Scholar 

  • Barnes RO, Bieri RH (1976) Helium flux through marine sediments of the northern Pacific Ocean. Earth Planet Sci Lett 28(3):331–336. doi:10.1016/0012-821X(76)90194-1

    Google Scholar 

  • Bayer R, Schlosser P, Bönisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the \(^3\)He ingrowth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathemathisch-naturwissenschaftliche Klasse 5, University of Heidelberg, Germany.

    Google Scholar 

  • Berner RA (1975) Diagenetic models of dissolved species in the interstitial waters of compacting sediments. Am J Sci 275:88–96

    Google Scholar 

  • Bertin C, Bourg ACM (1994) Rn-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river groundwater mixing. Environ Sci Technol 28(5):794–798

    Google Scholar 

  • Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050. doi:10.1021/es990840h

    Google Scholar 

  • Beyerle U, Leuenberger M, Schwander J, Kipfer R (2003) Noble gas evidence for gas fractionation in firn. In: Abstracts of the 13th Annual V.M. Goldschmidt Conference 2003, Kurashiki, Japan, Geochim. Cosmochim. Acta, vol 67, p A38.

    Google Scholar 

  • Bieri R (1971) Dissolved noble gases in marine waters. Earth Planet Sci Lett 10(3):329–333

    Google Scholar 

  • Bosch A, Mazor E (1988) Natural gas association with water and oil as depicted by atmospheric noble gases: case studies from the Southeastern Mediterranean Coastal Plain. Earth Planet Sci Lett 87(3):338–346. doi:10.1016/0012-821X(88)90021-0

    Google Scholar 

  • Bourg IC, Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: molecular dynamics simulations and hydrologic applications. Geochim Cosmochim Acta 72:2237–2247. doi:10.1016/j.gca.2008.02.012

    Google Scholar 

  • Brennwald MS, Hofer M, Peeters F, Aeschbach-Hertig W, Strassmann K, Kipfer R, Imboden DM (2003) Analysis of dissolved noble gases in the pore water of lacustrine sediments. Limnol Oceanogr Methods 1:51–62, http://aslo.org/lomethods/free/2003/0051.pdf

    Google Scholar 

  • Brennwald MS, Peeters F, Imboden DM, Giralt S, Hofer M, Livingstone DM, Klump S, Strassmann K, Kipfer R (2004) Atmospheric noble gases in lake sediment pore water as proxies for environmental change. Geophys Res Lett 31(4):L04202. doi:10.1029/2003GL019153

  • Brennwald MS, Imboden DM, Kipfer R (2005) Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth Planet Sci Lett 235(1–2):31–44. doi:10.1016/j.epsl.2005.03.004

    Google Scholar 

  • van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275(1–2):54–60. doi:10.1016/j.epsl.2008.07.060

    Article  Google Scholar 

  • Chaduteau C, Fourré E, Jean-Baptiste P, Dapoigny A, Baumier D, Charlou JL (2007) A new method for quantitative analysis of helium isotopes in sediment pore-waters. Limnol Oceanogr Methods 5:425–432. http://www.aslo.org/lomethods/free/2007/0425.pdf

    Google Scholar 

  • Chaduteau C, Jean-Baptiste P, Fourré E, Charlou JL, Donval JP (2009) Helium transport in sediment pore fluids of the Congo-Angola margin. Geochem Geophys Geosyst 10(1). doi:10.1029/2007GC001897

    Google Scholar 

  • Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X, Wang Y, Zhang R, Wang X (2009) Ice age terminations. Science 326(5950):248–52. doi:10.1126/science.1177840

    Google Scholar 

  • Copeland P, Watson EB, Urizar SC, Patterson D, Lapen TJ (2007) Alpha thermochronology of carbonates. Geochim Cosmochim Acta 71:4488–4511. doi:10.1016/j.gca.2007.07.004

    Article  Google Scholar 

  • Craig H, Weiss RF (1971) Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet Sci Lett 10(3):289–296. doi:10.1016/0012-821X(71)90033-1

    Google Scholar 

  • Davis B, Brewer S, Stevenson A, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Sci Rev 22(15–17):1701–1716. doi:10.1016/S0277-3791(03)00173-2

    Article  Google Scholar 

  • De Batist M, Imbo Y, Vermeesch P, Klerkx J, Giralt S, Delvaux D, Lignier V, Beck C, Kalugin I, Abdrakhmatov K (2002) Bathymetry and sedimentary environment of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): a large, high-altitude, tectonic lake. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment, NATO science series IV: earth and environmental sciences, vol 13. Kluwer Academic Publishers, Boston, pp 101–123

    Google Scholar 

  • Dreybrodt W (1980) Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem Geol 29:89–105

    Google Scholar 

  • Dyck W, Da Silva FG (1981) The use of ping-pong balls and latex tubing for sampling the helium content of lake sediments. J Geochem Explor 14:41–48. doi:10.1016/0375-6742(81)90102-3

    Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322(8):549–560. doi:10.1002/andp.19053220806

    Article  Google Scholar 

  • Faust GT (1950) Thermal analysis studies on carbonates: 1 aragonite and calcite. Am Mineral 35:207–224

    Google Scholar 

  • Fleitmann D, Burns S, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 333,000 years in Northern Oman from fluid inclusion evidence in speleothems. Quaternary Res 60:223–232. doi:10.1016/S0033-5894(03)00086-3

    Article  Google Scholar 

  • Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M, Goektuerk OM, Fankhauser A, Pickering R, Raible CC, Matter A, Kramers J, Tuysuz O (2009) Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett 36: L10707. doi:10.1029/2009GL040050

  • Fritz SC (1996) Paleolimnological records of climatic change in North America. Limnol Oceanogr 41(5):882–889

    Google Scholar 

  • Giralt S, Riera S, Leroy S, Buchaca T, Klerkx J, De Batist M, Beck C, Bobrov V, Brennwald MS, Catalan J, Gavshin V, Julia R, Kalugin I, Kipfer R, Lignier V, Lombardi S, Matychenkov V, Peeters F, Podsetchine V, Romanovsky V, Shukonikov F, Voltattorni N (2003) 1,000 years of environmental history of Lake Issyk-Kul. In: Nihoul J, Zavialov P, Micklin P (eds) Dying and dead seas: climatic versus anthropic causes, NATO science series IV: Earth and environmental sciences, vol 36. Kluwer Academic Publishers, Boston, pp 228–253

    Google Scholar 

  • Grathwohl P (1998) Diffusion in natural porous media, topics in environmental fluid mechanics. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Griffiths ML, Drysdale RN, Vonhof HB, Gagan MK, Zhao Jx, Ayliffe LK, Hantoro WS, Hellstrom JC, Cartwright I, Frisia S, Suwargadi BW (2010) Younger Dryas-Holocene temperature and rainfall history of southern Indonesia from \(\delta ^{18}\text{O}\) in speleothem calcite and fluid inclusions. Earth Planet Sci Lett 295(1–2):30–36. doi: 10.1016/j.epsl.2010.03.018

    Article  Google Scholar 

  • Henderson GM (2006) Caving in to new chronologies. Science 313(5787):620–622. doi:10.1126/science.1128980

    Article  Google Scholar 

  • Hoehn E, von Gunten HR (1989) Radon in groundwater—a tool to assess infiltration from surface waters to aquifers. Water Resour Res 25(8):1795–1803

    Google Scholar 

  • Hohmann R, Schlosser P, Jacobs S, Ludin A, Weppernig R (2002) Excess helium and neon in the southeast Pacific: Tracers for glacial meltwater. J Geophys Res-Oceans 107(C11):3198. doi:10.1029/2000JC000378

  • Holzner CP, McGinnis DF, Schubert CJ, Kipfer R, Imboden DM (2008) Noble gas anomalies related to high-intensity methane gas seeps in the Black Sea. Earth Planet Sci Lett 265(3–4):396–409. doi:10.1016/j.epsl.2007.10.029

    Google Scholar 

  • Horseman S, Higgo J, Alexander J, Harrington J (1996) Water, gas and solute movement through argillaceaous media. Technical Report CC-96/1, OECD Nuclear Energy Agency, France

    Google Scholar 

  • Huber C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K (2006) Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet Sci Lett 243(1–2):61–73. doi:10.1016/j.epsl.2005.12.036

    Article  Google Scholar 

  • Huxol S, Brennwald MS, Hoehn E, Kipfer R (2012) On the fate of \(^{220}\)Rn in soil material in dependence of water content: Implications from field and laboratory experiments. Chem Geol 298–299:116–122. doi: 10.1016/j.chemgeo.2012.01.002

    Article  Google Scholar 

  • Imboden DM (1975) Interstitial transport of solutes in non-steady state accumulating and compacting sediments. Earth Planet Sci Lett 27(2):221–228. doi:10.1016/0012-821X(75)90033-3

    Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767–10776

    Google Scholar 

  • Jean-Baptiste P, Mantisi F, Dapoigny A, Stievenard M (1992) Design and performance of a mass-spectrometric facility for measuring helium-isotopes in natural-waers and for low-level tritium determination by the He-3 ingrowth method. Appl Radiat Isotopes 43(7):881–891. doi:10.1016/0883-2889(92)90150-D

    Article  Google Scholar 

  • Kendall AC, Broughton PL (1978) Origin of fabrics in speleothems composed of columnar calcite crystals. J Sediment Petrol 48:519–538

    Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 615–700

    Google Scholar 

  • Kluge T (2008) Fluid inclusions in speleothems as a new archive for the noble gas thermometer. PhD thesis, University of Heidelberg, Germany

    Google Scholar 

  • Kluge T, Marx T, Scholz D, Niggemann S, Mangini A, Aeschbach-Hertig W (2008) A new tool for palaeoclimate reconstruction: noble gas temperatures from fluid inclusions in speleothems. Earth Planet Sci Lett 269(3–4):408–415

    Google Scholar 

  • Klump S, Kipfer R, Cirpka OA, Harvey CF, Brennwald MS, Ashfaque KN, Badruzzaman ABM, Hug SJ, Imboden DM (2006) Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ Sci Technol 40(1):243–250 doi:10.1021/es051284w

    Google Scholar 

  • Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28(5–6):412–432. doi:10.1016/j.quascirev.2008.10.021

    Article  Google Scholar 

  • Lan TF, Sano Y, Yang TF, Takahata N, Shirai K, Pinti DL (2010) Evaluating earth degassing in subduction zones by measuring helium fluxes from the ocean floor. Earth Planet Sci Lett 298(3–4):317–322. doi:10.1016/j.epsl.2010.07.049

    Article  Google Scholar 

  • Lee E, Nam S (2003) Freshwater supply by Korean rivers to the East Sea during the last glacial maximum: a review and new evidence from the Korea Strait region. Geo-Marine Lett 23(1):1–6. doi:10.1007/s00367-003-0118-1

    Article  Google Scholar 

  • Lerman A, Imboden D, Gat J (1995) Physics and chemistry of lakes. Springer, Berlin. doi:10.1002/iroh.19960810312

    Book  Google Scholar 

  • Litt T, Krastel S, Sturm M, Kipfer R, Örcen S, Heumann G, Franz S, Ülgen U, Niessen F (2009) ’PALEOVAN’, International Continental Scientific Dilling Program (ICDP) site survey results and perspectives. Quaternary Sci Rev 28:1555–1567. doi:10.1016/j.quascirev.2009.03.002

    Google Scholar 

  • Litt T, Anselmetti FS, Cagatay MN, Kipfer R, Krastel S, Schmincke HU (2011) A 500,000-year-long sediment archive drilled in Eastern Anatolia. EOS 92(51):477–479

    Google Scholar 

  • Loose B, Schlosser P, Smethie WM, Jacobs S (2009) An optimized estimate of glacial melt from the ross ice shelf using noble gases, stable isotopes, and CFC transient tracers. J Geophys Res-Oceans 114:C08007. doi:10.1029/2008JC005048

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature, developments in geochemistry, vol 3, 1st edn. Elsevier, Amsterdam, Oxford, New York, Tokyo

    Google Scholar 

  • Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36(12):1321–1336. doi:10.1016/0016-7037(72)90065-8

    Google Scholar 

  • Mazurek M, Alt-Epping P, Bath A, Gimmi T, Waber HN, Buschaert S, De Cannière P, De Craen M, Gautschi A, Savoye S, Vinsot A, Wemaere I, Wouters L (2011) Natural tracer profiles across argillaceous formations. Appl Geochem 26:1035–1064. doi:10.1016/j.apgeochem.2011.03.124

    Article  Google Scholar 

  • McDermott F, Schwarcz H, Rowe P (2005) Isotopes in speleothems. In: Leng M (ed) Isotopes in palaeoenvironmental research, developments in paleoenvironmental research, vol 10. Springer, pp 185–225

    Google Scholar 

  • Mohapatra RK, Schwenzer SP, Herrmann S, Murty SVS, Ott U, Gilmour JD (2009) Noble gases and nitrogen in Martian meteorites Dar al Gani 476, Sayh al Uhaymir 005 and Lewis Cliff 88516: EFA and extra neon. Geochim Cosmochim Acta 73(5):1505–1522. doi:10.1016/j.gca.2008.11.030

    Article  Google Scholar 

  • Musset AE (1969) Diffusion measurements and the potassium-argon method of dating. Geophys J Roy Astron Soc 18(3):257–303. doi:10.1111/j.1365-246X.1969.tb03569.x

    Article  Google Scholar 

  • Osenbrück K, Lippmann J, Sonntag C (1998) Dating very old pore waters in impermeable rocks by noble gas isotopes. Geochim Cosmochim Acta 62(18):3041–3045. doi:10.1016/S0016-7037(98)00198-7

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry, 2nd edn. Cambridge University Press

    Google Scholar 

  • Papp L, Palcsu L, Major Z (2010) Noble gas measurements from tiny water amounts: fluid inclusions in carbonates of speleothemes and coral skeletons. In: Geophysical Research Abstracts, 7th EGU General Assembly, European Geosciences Union, Vienna, Austria, vol 12, p A432

    Google Scholar 

  • Peeters F, Kipfer R, Achermann D, Hofer M, Aeschbach-Hertig W, Beyerle U, Imboden DM, Rozanski K, Fröhlich K (2000) Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Res I 47(4):621–654. doi:10.1016/S0967-0637(99)00066-7

    Article  Google Scholar 

  • Pitre F, Pinti DL (2010) Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim Cosmochim Acta 74:531–539. doi:10.1016/j.gca.2009.10.004

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165(3897):971–981. doi:10.1126/science.165.3897.971

    Article  Google Scholar 

  • Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J General Physiol 38:225–243

    Google Scholar 

  • Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VA (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176(1–4):207–227. doi:10.1016/S0031-0182(01)00339-X

    Google Scholar 

  • Romanovsky VV (2002) Water level variations and water balance of Lake Issyk-Kul. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment, NATO science series IV: earth and environmental sciences, vol 13. Kluwer Academic Publishers, London, pp 45–57

    Google Scholar 

  • Rübel A, Sonntag C, Lippmann J, Pearson F, Gautschi A (2002) Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay. Mont Terri. Switzerland. Geochim Cosmochim Acta 66(8):1311–1321. doi:10.1016/S0016-7037(01)00859-6

    Article  Google Scholar 

  • Sano Y, Wakita H (1987) Helium isotopes and heat flow on the ocean floor. Chem Geol 66(3–4):217–226. doi:10.1016/0168-9622(87)90043-1

    Article  Google Scholar 

  • Sayles FL, Jenkins WJ (1982) Advection of pore fluids through sediments in the Equatorial East Pacific. Science 217:245–248

    Google Scholar 

  • Scheidegger Y (2011) The use of noble gases in stalagmite fluid inclusions as proxies for the cave temperature. PhD thesis, Swiss Federal Institute of Technology Zurich (ETH), Switzerland. doi:10.3929/ethz-a-006551468

  • Scheidegger Y, Kluge T, Kipfer R, Aeschbach-Hertig W, Wieler R (2008) Paleotemperature reconstruction using noble gas concentrations in speleothem fluid inclusions. Pages News 16(3):10–12

    Google Scholar 

  • Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272(1–4):31–39. doi:10.1016/j.chemgeo.2010.01.010

    Google Scholar 

  • Scheidegger Y, Brennwald MS, Fleitmann D, Jeannin PY, Wieler R, Kipfer R (2011) Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions. Chem Geol 288(1–2):61–66. doi:10.1016/j.chemgeo.2011.07.002

    Article  Google Scholar 

  • Scherer P, Schultz L, Loeken T (1994) Weathering and atmospheric noble gases in chondrites. Matsuda J (ed) Noble gas geochemistry and cosmochemistry. Terra Scientific Publishing Company, pp 43–53

    Google Scholar 

  • Schlosser P, Winckler G (2002) Noble gases in ocean waters and sediments. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 701–730

    Google Scholar 

  • Schrag DP, Hampt G, Murray DW (1996) Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272:1930–1932

    Google Scholar 

  • Schrag DP, Adkins J, McIntyre K, Alexander J, Hodell A, Charles D, McManus J (2002) The oxygen isotopic composition of seawater during the Last Glacial Maxiumum. Quaternary Sci Rev 21(1–3):331–342. doi:10.1016/S0277-3791(01)00110-X

    Google Scholar 

  • Schwarcz HP, Harmon RS, Thompson P, Ford DC (1976) Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance. Geochim Cosmochim Acta 40:657–665

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Smithson PA (1991) Interrelationships between cave and outside air temperatures. Theoret Appl Climatology 44(1):65–73

    Google Scholar 

  • Solomon DK (2000) \(^4\)He in groundwater. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 425–439

    Google Scholar 

  • Solomon DK, Cook PG (2000) \(^3\)H and \(^3\)He. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 397–424

    Google Scholar 

  • Stanley R, Jenkins W (2012) Noble gases in seawater as tracers for physical and biogeochemical ocean processes. In: Burnard PG (ed) The Noble Gases as geochemical tracers, Advances in isotope geochemistry. Springer, New York

    Google Scholar 

  • Stephenson M, Schwartz WJ, Melnyk TW, Motycka MF (1994) Measurement of advective water velocity in lake sediment using natural helium gradients. J Hydrol 154(1–4):63–84. doi:10.1016/0022-1694(94)90212-7

    Google Scholar 

  • Strassmann KM, Brennwald MS, Peeters F, Kipfer R (2005) Dissolved noble gases in porewater of lacustrine sediments as palaeolimnological proxies. Geochim Cosmochim Acta 69(7):1665–1674. doi:10.1016/j.gca.2004.07.037

    Google Scholar 

  • Sültenfuss J, Roether W, Rhein M (2009) The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. Isotopes In Environmental and Health Studies 45(2):83–95. doi:10.1080/10256010902871929

    Article  Google Scholar 

  • Swart KS (2000) The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystalization in the margin of the Great Bahama Bank. In: Proceedings of the Ocean Drilling Program, Scientific Results, vol 166, pp 91–98

    Google Scholar 

  • Tomonaga Y (2010) Noble gases as tracers for transport of solutes and fluids in lake and ocean sediments. PhD thesis, Swiss Federal Institute of Technology Zurich (ETH), Switzerland. doi:10.3929/ethz-a-006129449

  • Tomonaga Y, Brennwald MS, Kipfer R (2011a) An improved method for the analysis of dissolved noble gases in the pore water of unconsolidated sediments. Limnol Oceanogr, Methods 9:42–49

    Google Scholar 

  • Tomonaga Y, Brennwald MS, Kipfer R (2011b) Spatial distribution and flux of terrigenic He dissolved in the sediment pore water of Lake Van (Turkey). Geochim Cosmochim Acta 75(10):2848–2864. doi:10.1016/j.gca.2011.02.038

    Article  Google Scholar 

  • Top Z, Izdar E, Ergün M, Konuk T (1990) Evidence for tectonism from \(^3\)He and residence time of helium in the Black Sea. EOS 71:1020–1021

    Google Scholar 

  • Torres M, Bayer R, Winckler G, Suckow A, Froelich P (1995) Elemental and isotopic abundance of noble gases in formation fluids recovered in situ from the Chile Triple Junction. In: Lewis S, Behrmann J, Musgrave R, Cande S (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 141. ODP, College Station TX, pp 321–329

    Google Scholar 

  • Vogel N, Scheidegger Y, Brennwald MS, Fleitmann D, Figura S, Wieler R, Kipfer R (2012) Noble gas paleotemperatures and water contents of stalagmites—a new extraction tool and a new paleoclimate proxy. In: Geophysical Research Abstracts, EGU General Assembly 2012, European Geosciences Union, Vienna, Austria, vol 14

    Google Scholar 

  • Wainer K, Genty D, Blamart D, Daeron M, Bar-Matthews M, Vonhof H, Dublyansky Y, Pons-Branchu E, Thomas L, van Calsteren P, Quinif Y, Caillon N (2011) Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large \(\delta ^{18}\text{O}\) shift between MIS6 and MIS5. Quaternary Sci Rev 30(1–2):130–146. doi:10.1016/j.quascirev.2010.07.004

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the east asian monsoon over the past 224,000 years. Nature 451(7182):1090–1093. doi:10.1038/nature06692

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley T, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan J, Küttel M, Müller S, Prentice I, Solomina O, Stocker T, Tarasoc P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quaternary Sci Rev 27:1791–1828

    Google Scholar 

  • Winckler G (1998) Radiogenes Helium im Ozean: Drei Fallstudien. PhD thesis, University of Heidelberg, Germany

    Google Scholar 

  • Winckler G, Kipfer R, Aeschbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea brines: new indication from noble gas data. Geochim Cosmochim Acta 64(9):1567–1575. doi:10.1016/S0016-7037(99)00441-X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Brennwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brennwald, M., Vogel, N., Scheidegger, Y., Tomonaga, Y., Livingstone, D., Kipfer, R. (2013). Noble Gases as Environmental Tracers in Sediment Porewaters and Stalagmite Fluid Inclusions. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_6

Download citation

Publish with us

Policies and ethics