Skip to main content

The Noble Gases as Geochemical Tracers: History and Background

  • Chapter
The Noble Gases as Geochemical Tracers

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

This chapter describes the discovery of the noble gases and the development of the first instrumentation used for noble gas isotopic analysis before outlining in very general terms how noble gases are analysed in most modern laboratories. Most modern mass spectrometers use electron impact sources and magnetic sector mass filters with detection by faraday cups and electron multipliers. Some of the performance characteristics typical of these instruments are described (sensitivity, mass discrimination). Extraction of noble gases from geological samples is for the most part achieved by phase separation, by thermal extraction (furnace) or by crushing in vacuo. The extracted gases need to be purified and separated by a combination of chemical and physical methods. The principles behind different approaches to calibrating the mass spectrometers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich LT, Nier AO (1948a) Argon 40 in potassium minerals. Phys Rev 74(8):876–877

    Google Scholar 

  • Aldrich LT, Nier AO (1948b) The occurence of He-3 in natural sources of helium. Phys Rev 74(11):1590–1594

    Google Scholar 

  • Alvarez LW, Cornog R (1939) He-3 in helium[4]. Phys Rev 56(4):379

    Google Scholar 

  • Baur H (1980) Numerische simulation und praktische erprobung einer rotationssymmetrischen ionenquelle für gasmassenspektrometer. No. 6596. In, vol. ETH, Zürich

    Google Scholar 

  • Baur H (1999) A noble-gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity. EOS 80:F1118

    Google Scholar 

  • Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass, spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050

    Google Scholar 

  • Botter R, Bouchoux G (1995) Spectrométrie de masse. Techniques de l’ingenieur, Analyse et caracterisation 4:2615

    Google Scholar 

  • Burnard PG, Farley KA (2000) Calibration of pressure-dependent sensitivity and discrimination in Nier-type noble gas ion sources. Geochem Geophys Geosyst 1:2000GC000038

    Google Scholar 

  • Burnard PG, Farley KA, Turner G (1998) Multiple fluid pulses in a samoan harzburgite. Chem Geol 148:99–114

    Google Scholar 

  • Burnard PG, Harrison DW, Turner G, Nesbitt R (2003) Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts. Geochem Geophys Geosyst 4(1). doi:10.1029/2002GC000326

    Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial He. Earth Planet Sci Lett 6:213–220

    Google Scholar 

  • Colin A, Burnard P, Graham DW, Marrocchi Y (2011) Plume-ridge interaction along the Galapagos Spreading Center: discerning between gas loss and source effects using neon isotopic compositions and 4He-40Ar-CO2 relative abundances. Geochim Cosmochim Acta (75):1145–1160. doi:10.1016/j.gca.2010.11.018

    Google Scholar 

  • Coon JH (1949). He-3 isotopic abundance. Phy Rev 75(9):1355–1357

    Google Scholar 

  • Coulie E (2001) Chronologie Ar/Ar et K/Ar de la dislocation du plateau éthiopien et de la déchirure continentale dans la corne d’afrique depuis 30 Ma. In, vol. Université de Paris XI, Orsay

    Google Scholar 

  • Crowther SA, Mohapatra RK, Turner G, Blagburn DJ, Kehm K, Gilmour JD (2008) Characteristics and applications of RELAX, an ultrasensitive resonance ionization mass spectrometer for xenon. J Anal At Spectrom 23(7):938–947

    Google Scholar 

  • Daunt JG, Probst RE, Johnston HL, Aldrich LT, Nier AO (1947) A new method of separation of the isotopes He3 and He4. Phys Rev 72(6):502–503

    Google Scholar 

  • Dempster AJ (1918) A new method of positive ray analysis. Phys Rev 11(4):316–325

    Google Scholar 

  • Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47

    Google Scholar 

  • Foeken JPT, Stuart FM, Dobson KJ, Persano C, Vilbert D (2006) A diode laser system for heating minerals for (U-Th)/He chronometry. Geochem Geophys Geosyst 7(4)

    Google Scholar 

  • Gilmour JD, Lyon IC, Johnston WA, Turner G (1994) RELAX: an ultrasensitive, resonance ionization mass spectrometer for xenon. Rev Sci Instrum 65(3):617–625

    Google Scholar 

  • Grochala W (2007) Atypical compounds of gases, which have been called ‘noble’. Chem Soc Rev 36(10):1632–1655

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441(7090):186–191

    Google Scholar 

  • Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in earth’s mantle suggests a late accretionary source for the atmosphere. Science 326(5959):1522–1525

    Google Scholar 

  • Hooker PJ, Bertrami R, Lombardi S, O’Nions RK, Oxburgh ER (1985) Helium-3 anomalies and crust-mantle interaction in Italy. Geochim Cosmochim Acta 49(12):2505–2513

    Google Scholar 

  • House MA, Farley KA, Stockli D (2000) Helium chronometry of apatite and titanite using Nd-YAG laser heating. Earth Planet Sci Lett 183(3–4):365–368

    Google Scholar 

  • Iwata Y, Ito C, Harano H, Aoyama T (2010) Improvement of the resonance ionization mass spectrometer performance for precise isotope analysis of krypton and xenon at the ppt level in argon. Int J Mass Spectrom 296(1–3):15–20

    Google Scholar 

  • Jenkins WJ (1987) H-3 and HE-3 in the beta triangle—observations of gyre ventilation and Oxygen Utilization rates. J Phys Oceanogr 17(6):763–783

    Google Scholar 

  • Lavielle B, Gilabert E, Thomas B, Lavastre V (2006) New RIS-TOF facility for measuring very small Kr and Xe gas samples. Geochim Cosmochim Acta 70(18):A344–A344

    Google Scholar 

  • Lord Rayleigh; Ramsay W (1895) VI. Argon: a new constituent of the atmosphere. Philosop Trans Royal Soc London A 186:187-241

    Google Scholar 

  • Lott DE (2001) Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem Geophys Geosyst 2:2001GC000202

    Google Scholar 

  • Lu ZT, Mueller P (2010) Atom trap trace analysis of rare noble gas isotopes. Adv At Mol Opt Phy 58:173–205

    Google Scholar 

  • Lupton JE, Johnson HPe, Embley RWe (1990) Water column hydrothermal plumes on the Juan de Fuca Ridge, special section; axial seamount; an active ridge axis volcano on the central juan de Fuca ridge. J Geophys Res B: Solid Earth Planet 95(8):12,829–812,842

    Google Scholar 

  • Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin IN (1970) Determination of the isotopic composition of atmospheric helium. Geochem Int 7:498–505

    Google Scholar 

  • Mamyrin BA, Tolstikh In, Anufriye Gs, Kamenski Il (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geochem Int Ussr 6(3):517

    Google Scholar 

  • Marrocchi Y, Burnard PG, Hamilton D, Colin A, Pujol M, Zimmermann L, Marty B (2009) Neon isotopic measurements using high-resolution, multicollector noble gas mass spectrometer: HELIX-MC. Geochem Geophys Geosyst 10:art no. Q04015

    Google Scholar 

  • Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of new internal He standard of japan (HESJ). Geochem J 36(2):191–195

    Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC Compendium of Chemical Terminology, 2nd edn. Blackwell Science, Cambridge

    Google Scholar 

  • Nagao K, Takaoka N, Matsubayashi O (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci Lett 53(2):175–188

    Google Scholar 

  • Neidherr D, Cakirli RB, Audi G, Beck D, Blaum K, Bohm C, Breitenfeldt M, Casten RF, George S, Herfurth F, Herlert A, Kellerbauer A, Kowalska M, Lunney D, Minaya-Ramirez E, Naimi S, Rosenbusch M, Schwarz S, Schweikhard L (2009) High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies. Phys Rev C: Nucl Phys 80(4)

    Google Scholar 

  • Parai R, Mukhopadhyay S, Lassiter JC (2009) New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook-Austral Islands. Earth Planet Sci Lett 277(1–2):253–261

    Google Scholar 

  • Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta 59(16):3389–3404

    Google Scholar 

  • Ramsay W, Travers MW (1898) On a new constituent of atmospheric air. Proc Royal Soc London 63 (1):405–408

    Google Scholar 

  • Raquin A, Moreira MA, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274(1–2):142–150

    Google Scholar 

  • Reynolds JH (1956) High sensitivity mass spectrometer for noble gas analysis. Rev Sci Instrum 27(11):928–934

    Google Scholar 

  • Reynolds JH, Jeffery PM, McCrory GA, Varga PM (1978) Improved charcoal trap for rare gas mass spectrometry. Rev Sci Instrum 49(4):547–548

    Google Scholar 

  • Sano Y, Wakita H (1988) Precise measurement of helium isotopes in terrestrial gases. Bull Chem Soc Japan 61:1153–1157

    Google Scholar 

  • Sano Y, Tokutake T, Takahata N (2008) Accurate measurement of atmospheric helium isotopes. Anal Sci 24(4):521–525

    Google Scholar 

  • Sano Y, Tominaga T, Nakamura Y, Wakita H (1982) He-3/He-4 ratios of methane-rich natural gases in japan. Geochem J 16(5):237–245

    Google Scholar 

  • Sano Y, Wakita H (1985) Geographical distribution of (super 3) He/(super 4) He ratios in Japan; implications for arc tectonics and incipient magmatism. J Geophys Res B 90(10):8729–8741

    Google Scholar 

  • Scarsi P (2000) Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochim Cosmochim Acta 64(21):3751–3762

    Google Scholar 

  • Strashnov I, Blagburn DJ, Gilmour JD (2011) A resonance ionization time of flight mass spectrometer with a cryogenic sample concentrator for isotopic analysis of krypton from extraterrestrial samples. J Anal At Spectrom 26(9):1763–1772

    Google Scholar 

  • Stuart FM, Turner G, Taylor R (1994) He-Ar isotope systematics of fluid inclusions: resolving mantle and crustal contributions to hydrothermal fluids. In: Matsuda J (ed) Noble gas geochemistry and cosmochemistry. Terra Scientific, Tokyo, pp 261–277

    Google Scholar 

  • Thonnard N (1995) Resonance ionization of heavy noble-gases—the potential of krypton and xenon measurements from single presolar grains. Meteoritics 30(5):588

    Google Scholar 

  • Turner G, Burgess R, Bannon M (1990) Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature 344:653–655

    Google Scholar 

  • Wang LB, Mueller P, Holt RJ, Lu ZT, O’Connor TP, Sano Y, Sturchio NC (2003) Laser spectroscopic measurement of helium isotope ratios. Geophys Res Lett 30(11):1592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pete Burnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnard, P., Zimmermann, L., Sano, Y. (2013). The Noble Gases as Geochemical Tracers: History and Background. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_1

Download citation

Publish with us

Policies and ethics