Skip to main content
  • 4378 Accesses

Abstract

In Laplacian eigenmaps method, the DR data is obtained from the eigen-subspace of the Laplace-Beltrami operator on the underlying manifold where the observed data resides. In Chapter 12, it was pointed out that Laplace-Beltrami operator directly links up with the heat diffusion operator by the exponential formula for positive self-adjoint operators. Therefore, they have the same eigenvector set, and the corresponding eigenvalues are linked by the exponential relation too. The relation indicates that the diffusion kernel on the manifold itself can be used in the construction of DR kernel. The diffusion map method (Dmaps) constructs the DR kernel using the diffusion maps. Then the DR data is computed from several leading eigenvectors of the Dmaps DR kernel. The chapter is organized as follows. In Section 14.1, we describe Dmaps method and its mathematical background. In Section 14.2, we present Dmaps algorithms with different types of normalization. The implementation of the various Dmaps algorithms is included in Section 14.3. In Section 14.4, we discuss the applications of Dmaps in the extraction of data features. In Section 14.5, several results of the implementation of Dmaps feature extractors are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannan, R., Vempala, S., Vetta, V.: On spectral clustering — good, bad and spectral. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Sceince (2000).

    Google Scholar 

  2. Meila, M., Shi, J.: Learning segmentation by random walks. In: Advances in Neural Information Processing Systems (2001).

    Google Scholar 

  3. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14 (2001).

    Google Scholar 

  4. Perona, P., Freeman, W.T.: A factorization approach to grouping. In: Proceedings of the 5th European Conference on Computer Vision, pp. 655–670 (1998).

    Google Scholar 

  5. Polito, M., Perona, P.: Grouping and dimensionality reduction by locally linear embedding. In: Advances in Neural Information Processing Systems, vol. 14 (2002).

    Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000).

    Article  Google Scholar 

  7. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience (1998).

    Google Scholar 

  8. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. Lafon, S.: Diffusion maps and geometric harmonics. Ph.D. thesis, Yale University (2004).

    Google Scholar 

  10. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Analysis and Machine Intelligence 28(11), 1784–1797 (2006).

    Article  Google Scholar 

  11. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans. Pattern Analysis and Machine Intelligence 28(9), 1393–1403 (2006).

    Article  Google Scholar 

  12. Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmon. Anal. 21, 113–1127 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Eighteenth Annual Conference on Neural Information Processing Systems (NIPS) (2004).

    Google Scholar 

  14. Coifman, R.R., Maggioni, M.: Diffusion wavelets in Special Issue on Diffusion Maps and Wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Academic Press (1975).

    Google Scholar 

  16. Graham, D.B., Allinson, N.M.: Characterizing virtual eigensignatures for general purpose face recognition. Computer and Systems Sciences 163, 446–456 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2012). Diffusion Maps. In: Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27497-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27497-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27496-1

  • Online ISBN: 978-3-642-27497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics