Skip to main content

Self-action of Spatially Bounded Waves Containing Shock Fronts

  • Chapter
Waves and Structures in Nonlinear Nondispersive Media

Part of the book series: Nonlinear Physical Science ((NPS))

  • 1090 Accesses

Abstract

The term self-action is used in wave physics primarily to characterize nonlinear phenomena, where an intense wave, without changing its shape, acquires amplitude-dependent absorption coefficient or propagation velocity. In the first case, one speaks of nonlinear absorption (or amplification) of the wave, whereas in the second case, one speaks of nonlinear dispersion. Note that precisely this permanence or slow variation of its shape allows one to consider the wave as a single whole entity with its own propagation velocity. Discovery of self-focusing of light brought about the first appreciable interest towards self-action effects. Historical background is described in detail in Refs [1,2]. In nonlinear optics, quasi-harmonic waves are stable objects. Their stability appears due to strong dispersion, which prevents generation of waves at other frequencies, i.e. distortion of the profile of the original wave. Self-action of waves is connected with the response of a medium at the fundamental frequency; this response appears due to cubic and higher-order odd nonlinearities of the medium. Note, however, that while considering coupled waves at different frequencies, self-action may also occur in a quadratically nonlinear medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium, Sov. Phys. Usp. 10, 609–636 (1968)

    Article  ADS  Google Scholar 

  2. S.N. Vlasov, V.I. Talanov, Self-focusing of Waves (Appl. Phys. Inst., Nizhny Novgorod, 1997). In Russian

    Google Scholar 

  3. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  4. V.I. Bespalov, VI. Talanov, Filamentary structure of light beams in nonlinear liquids, JETP Lett. 3, 307–312(1966)

    ADS  Google Scholar 

  5. V.I. Talanov, On sell-focusing of electromagnetic waves in nonlinear media, Radiophys. 7, 254–255(1964)

    MATH  Google Scholar 

  6. V.I. Talanov, On self-focusing of waves beams in nonlinear media, JETP Lett. 2, 138–141 (1965)

    ADS  Google Scholar 

  7. O.V Rudenko, Nonlinear sawtooth-shaped waves, Phys. Usp. 38, 965–989 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  8. E.V. Lavrent’ev, O.I. Kuzyan, Explosions in the Sea (Sudostroenie, Leningrad, 1977). In Russian

    Google Scholar 

  9. L.J. Runyan, E.J. Kane, Sonic boom literature survey. Fed. Av. Admin. Rep. FAA-RD-73-129-11, AD771-274 (1973)

    Google Scholar 

  10. L.K. Zarembo, V.A. Krasilnikov, Introduction to Nonlinear Acoustics; Sonic and Ultrasonic High-Intensity Waves (Nauka, Moscow, 1966). In Russian

    Google Scholar 

  11. O.A. Askar’yan, Self-focusing and focusing of ultra-and hypersound, JETP Lett. 4, 78–81 (1966)

    Google Scholar 

  12. N.S. Bakhvalov, Y.M. Zhileikin, E.A. Zabolotskaya, Nonlinear Theory of Sound Beams (AIP, New York. 1987)

    Google Scholar 

  13. V.G. Andreev, A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Observation of the self-focusing of sound, JETP Lett. 41, 466–469 (1985)

    ADS  Google Scholar 

  14. V.A. Assman, E.V. Bunkin, A.V. Vernik, G.A. Lyakhov, K.E. Shipilov, Observation of thermal self-action of a sound beam in a liquid, JETP Lett. 41, 182–184 (1985)

    ADS  Google Scholar 

  15. F.V Bunkin, G.A. Lyakhov, K.F. Shipilov, Thermal self-action of acoustic wave packets in a liquid, Phys. Usp. 38, 1099–1118 (1995)

    Article  ADS  Google Scholar 

  16. K.A. Naugolnykh, L.A. Ostrovsky, Nonlinear Wave Processes in Acoustics (Cambridge University Press. 1998)

    Google Scholar 

  17. E.A. Vinogradov, K.E. Shipilov, Evaluation of the thermal nonlinear self-action of the intensive acoustic beam in air. Thermal self-focusing, Phys. Vibrations 10, 72–77 (2002)

    Google Scholar 

  18. F.V. Bunkin, Y.A. Kravtsov, G.A. Lyakhov, Acoustic analogues of nonlinear-optics phenomena, Sov. Phys. Usp. 29, 607–619 (1986)

    Article  ADS  Google Scholar 

  19. A.K. Burov, Attainment of large intensities of ultrasound in a liquid, Sov. Phys. Acoust. 4, 315–320(1958)

    Google Scholar 

  20. V.Y. Armeev, A.A. Karabutov, A.A. Sapozhnikov, Peculiarities of thermal self-focusing of ultrasound in a liquid. Sov. Phys. Acoust. 33, 109–112 (1987)

    Google Scholar 

  21. A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, System of equations for description of thermal self-focusing of sound in a liquid, Moscow Univ. Phys. Bull. 29(4), 68–71 (1988)

    Google Scholar 

  22. O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977)

    MATH  Google Scholar 

  23. B.K. Novikov, O.V. Rudenko, V.I. Timoshenko, Nonlinear Underwater Acoustics (AIP, New York, 1987)

    Google Scholar 

  24. O.V. Rudenko, Self-action of wave beams containing shock fronts, Radiophys. Quantum Electron. 46, 338–351 (2003)

    ADS  Google Scholar 

  25. O.V. Rudenko, O.A. Sapozhnikov, Self-action effects for wave beams containing shock fronts, Phys. Usp. 47, 907–922 (2004)

    Article  ADS  Google Scholar 

  26. A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Thermal self-focusing theory with allowance for the formation of shock waves and acoustic flows, Sov. Phys. Acoust. 34, 371–375 (1988)

    Google Scholar 

  27. A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Thermal self-focusing of weak sock waves, Sov. Phys. Acoust. 35, 40–43 (1989)

    Google Scholar 

  28. I.M. Hallaj, R.O. Cleveland, K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am. 109, 2245–2253 (2001)

    Article  ADS  Google Scholar 

  29. C. Le Floch, M. Tanter, M. Fink, Self-defocusing in ultrasonic hyperthermia: experiment and simulation, Appl. Phys. Lett. 74, 3062–3064 (1999)

    Article  ADS  Google Scholar 

  30. O.V. Rudenko, M.M. Sagatov, O.A. Sapozhnikov, Thermal self-focusing of sawtooth waves, Sov. Phys. JETP 71, 449–557 (1990)

    Google Scholar 

  31. V.E. Fridman, Ray Theory of Finite-Amplitude. Acoustic Waves: Dr. Sci. Thesis (General Phys. Inst, Moscow, 1985). In Russian

    Google Scholar 

  32. V.E. Fridman, Self-refraction of weak shock waves. Sov. Phys. Acoust. 28, 551–559 (1982)

    MathSciNet  Google Scholar 

  33. O.V. Rudenko, S.I. Soluyan, R.V. Khokhlov, To the nonlinear theory of paraxial sound beams, Sov. Phys. Doklady 225, 1053–1055 (1975)

    Google Scholar 

  34. V.G. Andreev, A.A. Karabutov, O.V. Rudenko, Experimental investigation of sound beams of a finite amplitude, Moscow Univ. Phys. Bull. Ser. 3 Phys. Astron. 25(3), 35–38 (1984)

    Google Scholar 

  35. R.C. Preston (ed.), Output Measurements for Medical Ultrasound (Springer, New York, 1991)

    Google Scholar 

  36. Y.N. Makov, Waveguide propagation of sound beams in a nonlinear medium, Acoust. Phys. 46, 596–600 (2000)

    Article  ADS  Google Scholar 

  37. K.A. Naugolnykh, N.A. Roi, Electric Discharges in Water (Nauka, Moscow, 1971). In Russian

    Google Scholar 

  38. V.G. Andreev, V.Y. Vcroman, G.A. Denisov, O.V. Rudenko, O.A. Sapozhnikov, Nonlinear-acoustical aspects of extracorporeal lithotripsy, Sov. Phys. Acoust. 38, 325–330 (1992)

    Google Scholar 

  39. G.A. Askar’yan, M.G. Korolev, A.V. Yurkin, Generation of intense ultrasonic pulses by planar or concave focusing surface exploded by a current or by a laser beam, JETP Lett. 51, 667–671 (1990)

    ADS  Google Scholar 

  40. A.J. Coleman, I.E. Saunders, R.C. Preston, D.R. Bacon, Pressure waveforms generated by Dornier extracorporeal shock wave lithotripter. Ultrasound Med. Biol. 13, 651–657 (1987)

    Article  Google Scholar 

  41. A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, S.Y. Emelianov, Shear wave elasticity imaging — a new ultrasonic technology of medical diagnostic, Ultrasound Med. Biol. 24, 1419–1436 (1998)

    Article  Google Scholar 

  42. A.G. Musatov, O.V. Rudenko, O.A. Sapozhnikov, Accounting for nonlinear refraction and nonlinear absorption in focusing high-power pulses, Sov. Phys. Acoust. 38, 274–279 (1992)

    Google Scholar 

  43. O.A. Sapozhmkov, Focusing of high-power pulse, Acoust. Phys. 37, 760–769 (1991)

    Google Scholar 

  44. O.V. Rudenko, O.A. Sapozhnikov, Wave beams in cubically nonlinear nondispersive media., JETP 79, 220–229 (1994)

    ADS  Google Scholar 

  45. O.V. Rudenko, A.P. Sarvazyan, S.Y. Emelianov, Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium, J. Acoust. Soc. Am. 99, 2791–2798 (1996)

    Article  ADS  Google Scholar 

  46. A.A. Karabutov, O.V. Rudenko, The modified Khokhlov method for investigation of non-steady transonic flows of a compressed gas, Sov. Phys. Dokl. 24, 835–838 (1979)

    ADS  Google Scholar 

  47. A.A. Karabutov, O.V. Rudenko, Nonlinear plane waves excited by volume sources in a medium moving with transonic velocity, Sov. Phys. Acoust. 25, 306–309 (1979)

    Google Scholar 

  48. O.V. Rudenko, in Advances in Nonlinear Acoustics, ed. by H. Hobæk (World Scientific, Singapore, 1993), pp. 3–6

    Google Scholar 

  49. O.V. Rudenko, O.A. Sapozhnikov, Inertialess self-focusing of nondispersive waves with a broadband spectrum, Quantum Electron. 23, 896 (1993)

    Article  ADS  Google Scholar 

  50. O.V. Rudenko, A.A. Sukhorukov, Diffracting beams in cubically nonlinear media without dispersion, Acoust. Phys. 41(5), 725–730 (1995)

    ADS  Google Scholar 

  51. O.V. Rudenko, A.A. Sukhorukov, Self-action of light beams in media with two-photon absorption. Bull. Russian Acad. Sci. Physics 60(12). 6–25 (1996)

    Google Scholar 

  52. I.P. Lee-Bapty, D.G. Crighton, Nonlinear wave motion governed by modified Burgers equation. Philos. Trans. R. Soc. London Ser. A 323, 173–209 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. A.M. Vinogradov, I.S. Krasil’shchik, V.V. Lychagin, Introduction to the Geometry of Linear Differential Equations (Nauka, Moscow, 1986). In Russian

    Google Scholar 

  54. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics (D. Reidel, Dordrecht, 1985)

    MATH  Google Scholar 

  55. L.V. Ovsyannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  56. P.J. Olvcr, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Google Scholar 

  57. N.H. Ibragimov (ed.), Symmetries, Exact Solutions and Conservation Laws, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1 (CRC Press, Boca Raton, 1994)

    Google Scholar 

  58. N.H. Ibragimov (ed.), Applications in Engineering and Physical Sciences, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2 (CRC Press, Boca Raton. 1995)

    Google Scholar 

  59. N.H. Ibragimov (ed.), New Trends in Theoretical Developments and Computational Methods, CRC Handbook Of Lie Group Analysis of Differential Equations, vol. 3 (CRC Press, Boca Raton, 1996)

    Google Scholar 

  60. V.I. Talanov, Focusing of light in cubic media, JETP Lett. 11, 199–201 (1970)

    ADS  Google Scholar 

  61. L.D. Landau, E.M. Lifshilz, The Classical Field Theory (Pergamon Press, Oxford, 1975)

    Google Scholar 

  62. E.A. Kuznetsov, Integral criteria of wave collapses, Radiophys. Quantum Electron. 46, 307–322(2003)

    ADS  Google Scholar 

  63. O.V. Rudenko, O.A. Sapozhnikov, Intense acoustic beams: self-action of discontinuous waves, focusing of pulses and extracorporeal lithotripsy, Moscow Univ. Phys. Bull. 46, 3–17 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurbatov, S.N., Rudenko, O.V., Saichev, A.I. (2011). Self-action of Spatially Bounded Waves Containing Shock Fronts. In: Waves and Structures in Nonlinear Nondispersive Media. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23617-4_10

Download citation

Publish with us

Policies and ethics