Skip to main content

Natural and Anthropogenic Cd Isotope Variations

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Cadmium is a transition metal with eight naturally occurring isotopes that have atomic mass numbers of between 106 and 116. The large Cd isotope anomalies of meteorites have been subject to investigation since the 1970s, but improvements in instrumentation and techniques have more recently enabled routine studies of the smaller stable Cd isotope fractionations that characterize various natural and anthropogenic terrestrial materials. Whilst the current database is still comparatively small, pilot studies have identified two predominant mechanisms that routinely generate Cd isotope effects – partial evaporation/condensation and biological utilization. Processes that involve evaporation and condensation appear to be largely responsible for the Cd isotope fractionations of up to 1‰ (for 114Cd/110Cd) that have been determined for industrial Cd emissions, for example from ore refineries. Cadmium isotope measurements hence hold significant promise for tracing anthropogenic sources of this highly toxic metal in the environment. The even larger Cd isotope fractionations that have been identified in the oceans (up to 4‰ for 114Cd/110Cd) are due to biological uptake and utilization of dissolved seawater Cd. This finding confirms previous work, which identified Cd as an essential marine micronutrient that exhibits a phosphate-like distribution in the oceans. The marine Cd isotope fractionations are of particular interest, as they can be used to study micronutrient cycling and its impact on ocean productivity. In addition, they may also inform on past changes in marine nutrient utilization and how these are linked to global climate, if suitable archives of seawater Cd isotope compositions can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouchami W et al (2009) The Cd isotope signature of the Southern Ocean. Eos Trans. AGU 90, Fall Meet. Suppl:Abstract PP13A-1376

    Google Scholar 

  • Abouchami W et al (2010a) Cd isotopes, a proxy for water mass and nutrient uptake in the Southerm Ocean. Eos Trans. AGU 91, Ocean Sci. Meet. Suppl:Abstract CO13A-03

    Google Scholar 

  • Abouchami W et al (2010b) In search of a common reference material for cadmium isotope studies. 2010 Goldschmidt Conference A2

    Google Scholar 

  • Andersen T, Knutsen AB (1962) Anion-exchange study. I. Adsorption of some elements in HBr-solutions. Acta Chem Scand 16:849–854

    Google Scholar 

  • Angeli I (2004) A consistent set of nuclear rms charge radii: properties of the radius surface R (N, Z). At Data Nucl Data 87:185–206

    Google Scholar 

  • Aston FW (1935) The isotopic constitution and atomic weights of hafnium, thorium, rhodium, titanium, zirconium, calcium, gallium, silver, carbon, nickel, cadmium, iron and indium. Proc R Soc Lond A 149:396–405

    Google Scholar 

  • Aylett BJ (1973) Group IIB – cadmium. In: Trotman-Dickenson AF (ed) Comprehensive inorganic chemistry. Pergamon, Oxford

    Google Scholar 

  • Baker RGA et al (2010) The thallium isotope composition of carbonaceous chondrites – new evidence for live 205Pb in the early solar system. Earth Planet Sci Lett 291:39–47

    Google Scholar 

  • Balistrieri L, Brewer PG, Murray JW (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep sea. Deep Sea Res 28:101–121

    Google Scholar 

  • Balistrieri LS et al (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim Cosmochim Acta 72:311–328

    Google Scholar 

  • Barling J, Arnold GL, Anbar AD (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457

    Google Scholar 

  • Bender ML, Gagner CL (1976) Dissolved copper, nickel, and cadmium in the Sargasso Sea. J Mar Res 34:327–339

    Google Scholar 

  • Bermin J et al (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297

    Google Scholar 

  • Biegeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc 118:3676–3680

    Google Scholar 

  • Blum JD (2011) Chapter 12 Applications of stable mercury isotopes to biogeochemistry. In: Baskaran MM (ed) Handbook of environmental isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Böhlke JK et al (2005) Isotopic compositions of the elements, 2001. J Phys Chem Ref Data 34:57–67

    Google Scholar 

  • Boyle EA, Sclater F, Edmond JM (1976) On the marine geochemistry of cadmium. Nature 263:42–44

    Google Scholar 

  • Boyle EA (1981) Cadmium, zinc, copper, and barium in foraminifera tests. Earth Planet Sci Lett 53:11–35

    Google Scholar 

  • Boyle EA, Keigwin LD (1982) Deep circulation of the North Atlantic over the last 200,000 years: geochemical evidence. Science 218:784–787

    Google Scholar 

  • Boyle EA (1988) Cadmium: chemical tracer of deepwater paleoceanography. Paleoceanography 3:471–489

    Google Scholar 

  • Boyle EA (1992) Cadmium and δ13C paleochemical ocean distributions during the Stage 2 glacial maximum. Annu Rev Earth Planet Sci 20:245–287

    Google Scholar 

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198

    Google Scholar 

  • Bruland KW (1983) Trace elements in sea-water. In: Ripley JP, Chester R (eds) Chemical oceanography. Academic Press, London

    Google Scholar 

  • Buchachenko AL (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105:9995–10011

    Google Scholar 

  • Chizhikov DM (1966) Cadmium. Pergamon, Oxford

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G (2005a) Kinetic isotope fractionation of Cd and Zn during condensation. Eos Trans. AGU 86 Fall Meet. Suppl:Abstract V41F-1523

    Google Scholar 

  • Cloquet C et al (2005b) Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS. Geostand Geoanalyt Res 29:95–106

    Google Scholar 

  • Cloquet C et al (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40:2525–2530

    Google Scholar 

  • Collier R, Edmond JM (1984) The trace element geochemistry of marine biogenic particulate matter. Prog Oceanogr 13:113–199

    Google Scholar 

  • Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, Oxford

    Google Scholar 

  • Cullen JT et al (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167

    Google Scholar 

  • Cullen JT (2006) On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: could chronic iron limitation of phytoplankton growth cause the kink? Limnol Oceanogr 51:1369–1380

    Google Scholar 

  • Davis AM et al (2005) Isotopic mass-fractionation laws and the initial solar system 26Al/27Al ratio. Lunar Planet Sci Conf XXXVI Abstract No:2334

    Google Scholar 

  • de Baar HJW et al (1994) Cadmium versus phosphate in the world ocean. Mar Chem 46:261–281

    Google Scholar 

  • de Baar HJW, La Roche J (2002) Trace metals in the oceans: evolution, biology and global change. In: Wefer G, Lamy F, Mantoura F (eds) Marine science frontiers for Europe. Springer, Berlin

    Google Scholar 

  • De La Rocha CL et al (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680–683

    Google Scholar 

  • Dixon JL et al (2006) Cadmium uptake by marine micro-organisms in the English Channel and Celtic Sea. Aquat Microb Ecol 44:31–43

    Google Scholar 

  • Dodson MH (1963) A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: part I – General first-order algebraic solutions. J Sci Instrum 40:289–295

    Google Scholar 

  • Donat JR, Bruland KW (1995) Trace elements in the oceans. In: Salbu B, Steinnes E (eds) Trace elements in natural waters. CRC Press, Boca Raton

    Google Scholar 

  • Doucelance R, Manhès G (2001) Reevaluation of precise lead isotope measurements by thermal ionization mass spectrometry: comparison with determinations by plasma source mass spectrometry. Chem Geol 176:361–377

    Google Scholar 

  • Elderfield H, Rickaby REM (2000) Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature 405:305–310

    Google Scholar 

  • Estrade N et al (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Google Scholar 

  • Faris JP, Buchanan RF (1964) Anion exchange characteristics of elements in nitric acid medium. Anal Chem 36:1157–1158

    Google Scholar 

  • Frank M (2002) Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev Geophys 40:1–38

    Google Scholar 

  • Frew RD, Hunter KA (1992) Influence of Southern Ocean waters on the cadmium–phosphate properties of the global ocean. Nature 360:144–146

    Google Scholar 

  • Fujii T, Moynier F, Albarède F (2009a) The nuclear field shift effect in chemical exchange reactions. Chem Geol 267:139–156

    Google Scholar 

  • Fujii T et al (2009b) Nuclear field shift effect in the isotope exchange reaction of cadmium using a crown ether. Chem Geol 267:157–163

    Google Scholar 

  • Galer SJG (1999) Optimal double and triple spiking for high precision lead isotopic measurements. Chem Geol 157:255–274

    Google Scholar 

  • Gao B et al (2008) Precise determination of cadmium and lead isotopic compositions in river sediments. Anal Chim Acta 612:114–120

    Google Scholar 

  • Gault-Ringold M et al (2009) Cadmium isotopic compositions and nutrient cycling in the Southern Ocean. Goldschmidt Conference A418

    Google Scholar 

  • Hein JR et al (1997) Iron and manganese oxide mineralization in the Pacific. In: Nicholson K, Hein JR, Bühn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Special Publications, London

    Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn, and Rb. Geochim Cosmochim Acta 44:1519–1533

    Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13

    Google Scholar 

  • Hendry KR et al (2008) Cadmium and phosphate in coastal Antarctic seawater: implications for Southern Ocean nutrient cycling. Mar Chem 112:149–157

    Google Scholar 

  • Hofmann A (1971) Fractionation correction for mixed-isotope spikes of Sr, K, and Pb. Earth Planet Sci Lett 10:397–402

    Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (1985) Lehrbuch der Anorganischen Chemie (91–100 ed). de Gruyter, Berlin

    Google Scholar 

  • Horner TJ et al (2010) Ferromanganese crusts as archives of deep water Cd isotope compositions. Geochem Geophys Geosys 11:Q04001. doi:10.1029/2009GC002987

    Google Scholar 

  • Hu Z, Gao S (2008) Upper crustal abundances of trace elements: a revision and update. Chem Geol 253:205–221

    Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3484

    Google Scholar 

  • John SG et al (2008) Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet Sci Lett 269:17–28

    Google Scholar 

  • Johnson CM, Beard BL, Albarède F (Eds.) (2004) Geochemistry of Non-Traditional Stable Isotopes, 454 pp., Mineralogical Society, Washington, DC

    Google Scholar 

  • Juillot F et al (2008) Zn isotopic fractionation caused by sorption on goethite and 2-lines ferrihydrite. Geochim Cosmochim Acta 72:4886–4900

    Google Scholar 

  • Knyazev DA, Myasoedov NF (2001) Specific effects of heavy nuclei in chemical equilibrium. Separ Sci Technol 36:1677–1696

    Google Scholar 

  • Korkisch J (1989) Handbook of ion exchange resins: their application to inorganic analytical chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Kraus KA, Nelson F (1955) Anion Exchange Studies of the Fission Products, paper presented at International Conference on the Peaceful Uses of Atomic Energy, United Nations, New York, Geneva, 1956

    Google Scholar 

  • Lacan F et al (2006) Cadmium isotopic composition in the ocean. Geochim Cosmochim Acta 70:5104–5118

    Google Scholar 

  • Lagos M et al (2008) The Earth’s missing lead may not be in the core. Nature 456:89–92

    Google Scholar 

  • Lane TW et al (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    Google Scholar 

  • Lea DW (2006) Elemental and isotopic proxies of past ocean temperatures. In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Leland WT, Nier AO (1948) The relative abundances of the zinc and cadmium isotopes. Phys Rev 73:1206

    Google Scholar 

  • Li Y-H, Schoonmaker JE (2005) Chemical composition and mineralogy of marine sediments. In: Mackenzie FT (ed) Sediments, diagenesis, and sedimentary rocks. Elsevier, Amsterdam

    Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Google Scholar 

  • Lynch-Stieglitz J (2006) Tracers of past ocean circulation. In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Manhès G, Göpel C (2003) Heavy stable isotope measurements with thermal ionization mass spectrometry: non mass-dependent fractionation effects between even and uneven isotopes. Geophys Res Abstr 5:10936

    Google Scholar 

  • Manhès G, Göpel C (2007) Mass-independant fractionationation during TIMS measurements: evidence of nuclear shift effect? Geochim Cosmochim Acta 71:A618

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Google Scholar 

  • Maréchal CN et al (2000) Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosys 1:1999GC000029

    Google Scholar 

  • Martin JM, Whitfield M (1983) River input of chemical elements to the ocean. In: Wong CS, Boyle EA, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in seawater. Plenum, New York

    Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McDonough WF (2005) Compositional model for the Earth’s core. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam

    Google Scholar 

  • Measures C (2007) GEOTRACES – an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem d Erde Geochem 67:85–131

    Google Scholar 

  • Nielsen SG, Rehkämper M (2011) Chapter 13 Thallium isotopes and their application to problems in earth and environmental science. In: Baskaran MM (ed) Handbook of environmental isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Nier AO (1936) A mass-spectrographic study of the isotopes of argon, potassium, rubidium, zinc and cadmium. Phys Rev 50:1041–1045

    Google Scholar 

  • Nriagu JO (Ed.) (1981) Cadmium in the Environment. Part II: Health Effects, 908 pp., Wiley & Sons, New York

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Google Scholar 

  • Palme H, Larimer JW, Lipschutz ME (1988) Moderately volatile elements. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson

    Google Scholar 

  • Palme H, O’Neill HStC (2005) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core. Elsevier, Amsterdam

    Google Scholar 

  • Pfennig G, Klewe-Nebenius H, Seelmann-Eggebert W (1998) Chart of the nuclides. Forschungszentrum Karlsruhe, Karlsruhe

    Google Scholar 

  • Pokrovsky OS, Viers J, Freydier R (2005) Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. J Coll Interf Sci 291:192–200

    Google Scholar 

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in marine diatom. Nature 344:658–660

    Google Scholar 

  • Prizkow W et al (2007) The isotope abundances and the atomic weight of cadmium by a metrological approach. Int J Mass Spectrom 261:74–85

    Google Scholar 

  • Rehkämper M, Schönbächler M, Stirling CH (2001) Multiple collector ICP-MS: introduction to instrumentation, measurement techniques and analytical capabilities. Geostand Newslett 25:23–40

    Google Scholar 

  • Rehkämper M et al (2002) Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet Sci Lett 197:65–81

    Google Scholar 

  • Rehkämper M et al (2004) Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts. Earth Planet Sci Lett 219:77–91

    Google Scholar 

  • Richter FM et al (2002) Elemental and isotopic fractionation of type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim Cosmochim Acta 66:521–540

    Google Scholar 

  • Rickaby REM, Elderfield H (1999) Planktonic foraminiferal Cd/Ca: paleonutrients or paleotemperature? Paleoceanography 14:293–303

    Google Scholar 

  • Ripperger S, Rehkämper M (2007) Precise determination of cadmium isotope fractionation in seawater by double-spike MC-ICPMS. Geochim Cosmochim Acta 71:631–642

    Google Scholar 

  • Ripperger S et al (2007) Cadmium isotope fractionation in seawater – a signature of biological activity. Earth Planet Sci Lett 261:670–684

    Google Scholar 

  • Ripperger S et al (2008) Cd/Ca ratios of in situ collected planktonic foraminiferal tests. Paleoceanography 23:PA3209

    Google Scholar 

  • Rosman KJR, de Laeter JR (1975) The isotopic composition of cadmium in terrestrial minerals. Int J Mass Spectrom Ion Phys 16:385–394

    Google Scholar 

  • Rosman KJR, de Laeter JR (1976) Isotopic fractionation in meteoritic cadmium. Nature 261:216–218

    Google Scholar 

  • Rosman KJR, de Laeter JR (1978) A survey of cadmium isotopic abundances. J Geophys Res 83:1279–1287

    Google Scholar 

  • Rosman KJR et al (1980) Isotope composition of Cd, Ca, Mg in the Brownfield chondrite. Geochem J 14:269–277

    Google Scholar 

  • Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431

    Google Scholar 

  • Rudnick RL, Gao S (2005) Composition of the continental crust. In: Rudnick RL (ed) The crust. Elsevier, Amsterdam

    Google Scholar 

  • Sands DG, de Laeter JR, Rosman KJR (2001) Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum. Earth Planet Sci Lett 186:335–346

    Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Google Scholar 

  • Schediwy S, Rosman KJR, de Laeter JR (2006) Isotope fractionation of cadmium in lunar material. Earth Planet Sci Lett 243:326–335

    Google Scholar 

  • Schmitt A-D, Galer SJG, Abouchami W (2009a) Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth Planet Sci Lett 277:262–272

    Google Scholar 

  • Schmitt A-D, Galer SJG, Abouchami W (2009b) High-precision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry. J Anal At Spectrom 24:1079–1088

    Google Scholar 

  • Schönbächler M et al (2009) The cadmium isotope composition of the Earth. Geochim Cosmochim Acta 73:A1183

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Shiel AE et al (2009) Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios. Anal Chim Acta 633:29–37

    Google Scholar 

  • Shiel AE, Weiss D, Orians KJ (2010) Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Total Environ 408:2357–2368

    Google Scholar 

  • Siebert C et al (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869

    Google Scholar 

  • Simon JI, Young ED (2007) Evaporation and Mg isotope fractionation: model constraints for CAIs. Lunar Planet Sci XXXVIII Abstract No:2426

    Google Scholar 

  • Slater JC (1964) Atmic radii in crystals. J Chem Phys 41:3199–3204

    Google Scholar 

  • Smith CN et al (2005) Mercury isotope fractionation in fossil hydrothermal systems. Geology 33:825–828

    Google Scholar 

  • Stirling CH et al (2007) Low-temperature isotopic fractionation of uranium. Earth Planet Sci Lett 264:208–225

    Google Scholar 

  • Strelow FWE (1978) Distribution coefficients and anion exchange behavior of some elements in hydrobromic-nitric acid mixtures. Anal Chem 50:1359–1361

    Google Scholar 

  • Sunda WG, Huntsman SA (2000) Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnol Oceanogr 45:1501–1516

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Thiemens MH (1999) Mass independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345

    Google Scholar 

  • Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34:217–262

    Google Scholar 

  • Thirlwall MF (2000) Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb-204Pb double spike. Chem Geol 163:299–322

    Google Scholar 

  • Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Phil Trans R Soc Lond Ser A 325:535–544

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Google Scholar 

  • Wetherill GW (1964) Isotopic composition and concentration of molybdenum in iron meteorites. J Geophys Res 69:4403–4408

    Google Scholar 

  • Weyer S et al (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–359

    Google Scholar 

  • Wieser ME (2006) Atomic weights of the elements (IUPAC technical report). Pure Appl Chem 78:2051–2066

    Google Scholar 

  • Witt-Eickschen G et al (2009) The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim Cosmochim Acta 73:1755–1778

    Google Scholar 

  • Wombacher F, Rehkämper M (2003) Investigation of the mass discrimination of multiple collector ICP-MS using neodymium isotopes and the generalised power law. J Anal At Spectrom 18:1371–1375

    Google Scholar 

  • Wombacher F et al (2003) Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple collector-ICPMS. Geochim Cosmochim Acta 67:4639–4654

    Google Scholar 

  • Wombacher F, Rehkämper M (2004) Problems and suggestions concerning the notation of Cd stable isotope compositions and the use of reference materials. Geostand Geoanal Res 28:173–178

    Google Scholar 

  • Wombacher F et al (2004) Determination of the mass-dependence of cadmium isotope fractionation during evaporation. Geochim Cosmochim Acta 68:2349–2357

    Google Scholar 

  • Wombacher F et al (2008) Cadmium stable isotope cosmochemistry. Geochim Cosmochim Acta 72:646–667

    Google Scholar 

  • Wombacher F (2010) Mass-independent cadmium isotope fractionation during evaporation. 88th Ann. Meet. German Mineral. Soc. p 65

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Xie Q et al (2005) High precision Hg isotope analysis of environmental samples using gold trap-MC-ICP-MS. J Anal At Spectrom 20:515–522

    Google Scholar 

  • Xu Y et al (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–62

    Google Scholar 

  • Xue Z et al (2010a) Cadmium isotope constraints on nutrient cycling in the Peruvian oxygen minimum zone. Goldschmidt 2010 Conference A1166

    Google Scholar 

  • Xue Z et al (2010b) Cadmium isotope fractionation in the Southern Ocean. Eos Trans. AGU 91, Ocean Sci Meet Suppl:Abstract CO15C-12

    Google Scholar 

  • Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge. Geochim Cosmochim Acta 65:2037–2042

    Google Scholar 

  • Yi W et al (2000) Cadmium, indium, tin, tellurium, and sulfur in oceanic basalrs: implications for chalcophile element fractionation in the Earth. J Geophys Res 105:18927–18948

    Google Scholar 

  • Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104

    Google Scholar 

Download references

Acknowledgments

Wafa Abouchami and Steve Galer from the Max Planck Institute for Chemistry in Mainz (Germany) are thanked for their efforts to identify a suitable common Cd isotope reference material and their encouragement to present data relative to the NIST standard in this manuscript. Constructive formal reviews by Tom Bullen and an anonymous referee as well as the editorial efforts of Mark Baskaran are gratefully acknowledged. F.W. thanks Carsten Münker, Stefan Weyer and Ambre Luguet for support of additional Cd isotope analyses of reference materials and Cd metal samples in the Neptune lab in Bonn and Steve Galer for discussions. M.R. is grateful for helpful advice and contributions provided by Maria Schönbächler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rehkämper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehkämper, M., Wombacher, F., Horner, T.J., Xue, Z. (2012). Natural and Anthropogenic Cd Isotope Variations. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_8

Download citation

Publish with us

Policies and ethics