Skip to main content

The Millipede – A Nanotechnology-Based AFM Data-Storage System

  • Chapter
Springer Handbook of Nanotechnology

Abstract

The millipede concept presented in this chapter is a new approach to storing data at high speed and ultrahigh density. The interesting part is that millipede stores digital information in a completely different way from magnetic hard disks, optical disks, and transistor-based memory chips. The ultimate locality is provided by a tip, and high data rates are a result of massive parallel operation of such tips. As storage medium, polymer films are being considered, although the use of other media, in particular magnetic materials, has not been ruled out. The current effort is focused on demonstrating the millipede concept with areal densities higher than 1 Tb/inch2 and parallel operation of very large two-dimensional (2-D) (up to 64 × 64) atomic force microscopy (AFM) cantilever arrays with integrated tips and write/read/erase functionality. The fabrication and integration of such a large number of mechanical devices (cantilever beams) will lead to what we envision as the very large-scale integration (VLSI) age of micro- and nanomechanics.

In this chapter, the millipede concept for a microelectromechanical systems (MEMS)-based storage device is described in detail. In particular, various aspects pertaining to AFM thermomechanical read/write/erase functions, 2-D array fabrication and characteristics, x, y, z microscanner design, polymer media properties, read channel modeling, servo control and synchronization, as well as modulation coding techniques suitable for probe-based data-storage devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

ADC:

analog-to-digital converter

AFM:

atomic force microscope

AFM:

atomic force microscopy

BP:

bit pitch

DC:

direct-current

DRAM:

dynamic random-access memory

MEMS:

microelectromechanical system

PC:

polycarbonate

PDMS:

polydimethylsiloxane

PECVD:

plasma-enhanced chemical vapor deposition

PES:

photoemission spectroscopy

PES:

position error signal

PMMA:

poly(methyl methacrylate)

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SRC:

sampling rate converter

STM:

scanning tunneling microscope

STM:

scanning tunneling microscopy

TP:

track pitch

VCO:

voltage-controlled oscillator

VLSI:

very large-scale integration

References

  1. E. Grochowski, R.F. Hoyt: Future trends in hard disk drives, IEEE Trans. Magn. 32, 1850–1854 (1996)

    Article  Google Scholar 

  2. D.A. Thompson, J.S. Best: The future of magnetic data storage technology, IBM J. Res. Dev. 44, 311–322 (2000)

    Article  Google Scholar 

  3. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7 × 7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50, 120–123 (1983)

    Article  Google Scholar 

  4. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  5. H.J. Mamin, D. Rugar: Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005 (1992)

    Article  Google Scholar 

  6. R.P. Ried, H.J. Mamin, B.D. Terris, L.S. Fan, D. Rugar: 6-MHz 2-N/m piezoresistive atomic-force-microscope cantilevers with INCISIVE tips, J. Microelectromech. Syst. 6, 294–302 (1997)

    Article  Google Scholar 

  7. B.D. Terris, S.A. Rishton, H.J. Mamin, R.P. Ried, D. Rugar: Atomic force microscope-based data storage: Track servo and wear study, Appl. Phys. A 66, S809–S813 (1998)

    Article  Google Scholar 

  8. H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar: High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681–699 (1995)

    Article  Google Scholar 

  9. H.J. Mamin, R.P. Ried, B.D. Terris, D. Rugar: High-density data storage based on the atomic force microscope, Proc. IEEE 87, 1014–1027 (1999)

    Article  Google Scholar 

  10. L.R. Carley, J.A. Bain, G.K. Fedder, D.W. Greve, D.F. Guillou, M.S.C. Lu, T. Mukherjee, S. Santhanam, L. Abelmann, S. Min: Single-chip computers with microelectromechanical systems-based magnetic memory, J. Appl. Phys. 87, 6680–6685 (2000)

    Article  Google Scholar 

  11. G. Gibson, T.I. Kamins, M.S. Keshner, S.L. Neberhuis, C.M. Perlov, C.C. Yang: Ultra-high density storage device, (1996) US Patent 5557596

    Google Scholar 

  12. E. Eleftheriou, T. Antonakopoulos, G.K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M.A. Lantz, H. Pozidis, H.E. Rothuizen, P. Vettiger: Millipede – A MEMS-based scanning-probe data-storage system, IEEE Trans. Magn. 39, 938–945 (2003)

    Article  Google Scholar 

  13. G.K. Binnig, H. Rohrer, P. Vettiger: Mass-storage applications of local probe arrays, (1998) US Patent 5835477

    Google Scholar 

  14. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig: Ultrahigh density, high-data-rate NEMS-based AFM data storage system, J. Microelectron. Eng. 46, 11–17 (1999)

    Article  Google Scholar 

  15. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The “millipede” – Nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1, 39–55 (2002)

    Article  Google Scholar 

  16. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger: Microfabrication and parallel operation of 5 × 5 2D AFM cantilever array for data storage and imaging, Proc. IEEE 11st Int. Workshop MEMS, Heidelberg 1998 (IEEE, Piscataway 1998) pp. 8–11

    Google Scholar 

  17. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C. Quate: 5 × 5 2D AFM cantilever arrays: A first step towards a terabit storage device, Sens. Actuators A 73, 89–94 (1999)

    Article  Google Scholar 

  18. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig: The “millipede” – More than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44, 323–340 (2000)

    Article  Google Scholar 

  19. B.W. Chui, H.J. Mamin, B.D. Terris, D. Rugar, K.E. Goodson, T.W. Kenny: Micromachined heaters with 1–μ s thermal time constants for AFM thermomechanical data storage, Proc. IEEE Transducers, Chicago 1997 (IEEE, Piscataway 1997) 1085–1088

    Google Scholar 

  20. W.P. King, J.G. Santiago, T.W. Kenny, K.E. Goodson: Modelling and prediction of sub-micrometer heat transfer during thermomechanical data storage, 1999 Microelectromechanical Systems (MEMS). Proc. ASME Intl. Mech. Eng. Congr. Expo., ed. by A.P. Lee, L. Lin, F.K. Forster, Y.C. Young, K. Goodson, R.S. Keynton (ASME, New York 1999) pp. 583–588

    Google Scholar 

  21. W.P. King, T.W. Kenny, K.E. Goodson, G.L.W. Cross, M. Despont, U. Dürig, H. Rothuizen, G. Binnig, P. Vettiger: Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation, J. Microelectromech. Syst. 11, 765–774 (2002)

    Article  Google Scholar 

  22. G.K. Binnig, M. Despont, W. Häberle, P. Vettiger: Method of forming ultrasmall structures and apparatus therefore, (March 1999) US Patent Office, Application No. 147865

    Google Scholar 

  23. G. Binnig, M. Despont, U. Drechsler, W. Häberle, M. Lutwyche, P. Vettiger, H.J. Mamin, B.W. Chui, T.W. Kenny: Ultra high-density AFM data storage with erase capability, Appl. Phys. Lett. 74, 1329–1331 (1999)

    Article  Google Scholar 

  24. G.K. Binnig, J. Brugger, W. Häberle, P. Vettiger: Investigation and/or manipulation device (March 1999) US Patent Office, Application No. 147867

    Google Scholar 

  25. S.M. Sze: Physics of Semiconductors Devices (Wiley, New York 1981)

    Google Scholar 

  26. G. Cherubini, T. Antonakopoulos, P. Bächtold, G.K. Binnig, M. Despont, U. Drechsler, A. Dholakia, U. Dürig, E. Eleftheriou, B. Gotsmann, W. Häberle, M.A. Lantz, T. Loeliger, H. Pozidis, H.E. Rothuizen, R. Stutz, P. Vettiger: The millipede, a very dense, highly parallel scanning-probe data-storage system, ESSCIRC – Proc. 28th Eur. Solid-State Circuits Conf., ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) pp. 121–125

    Google Scholar 

  27. E. Eleftheriou, T. Antonakopoulos, G.K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Dürig, M.A. Lantz, H. Pozidis, H.E. Rothuizen, P. Vettiger: “Millipede”: A MEMS-based scanning-probe data-storage system, Digest of the Asia-Pacific Magnetic Recording Conference 2002, APMRC ʼ02 (IEEE, Piscataway 2002) CE–2–1–CE2–2

    Google Scholar 

  28. H. Pozidis, W. Häberle, D. Wiesmann, U. Drechsler, M. Despont, T.R. Albrecht, E. Eleftheriou: Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn. 40, 2531–2536 (2004)

    Article  Google Scholar 

  29. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for AFM data storage, Technical Digest 12nd IEEE Int. Micro Electro Mech. Syst. Conf. “MEMS ʼ99”, Orlando 1999 (IEEE, Piscataway 1999) 564–569

    Google Scholar 

  30. T.S. Ravi, R.B. Marcus: Oxidation sharpening of silicon tips, J. Vac. Sci. Technol. B 9, 2733–2737 (1991)

    Article  Google Scholar 

  31. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for parallel AFM data storage, Sens. Actuators A 80, 100–107 (2000)

    Article  Google Scholar 

  32. A. Pantazi, M. Lantz, G. Cherubini, H. Pozidis, E. Eleftheriou: A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device, Nanotechnology 15, S612–S621 (2004)

    Article  Google Scholar 

  33. M. Despont, U. Drechsler, R. Yu, H.B. Pogge, P. Vettiger: Wafer-scale microdevice transfer/interconnect: from a new integration method to its application in an AFM-based data-storage system, Technical Digest, Transducers `03 (IEEE, Piscataway 2003) pp. 1907–1910

    Google Scholar 

  34. H. Rothuizen, M. Despont, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, P. Vettiger: Compact copper/epoxy-based micromachined electromagnetic scanner for scanning probe applications, Technical Digest, 15th IEEE Int. Conf. on Micro Electro Mech. Syst. “MEMS 2002” (IEEE, Piscataway 2002) pp. 582–585

    Google Scholar 

  35. S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)

    Article  Google Scholar 

  36. M. Lutwyche, U. Drechsler, W. Häberle, R. Widmer, H. Rothuizen, P. Vettiger, J. Thaysen: Planar micromagnetic x/y/z scanner with five degrees of freedom. In: Magnetic Materials, Processes, and Devices: Applications to Storage and Micromechanical Systems (MEMS), Vol. 98-20, ed. by L.T. Romankiw, S. Krongelb, C.H. Ahn (Electrochemical Society, Pennington 1999) pp. 423–433

    Google Scholar 

  37. H. Rothuizen, U. Drechsler, G. Genolet, W. Häberle, M. Lutwyche, R. Stutz, R. Widmer, P. Vettiger: Fabrication of a micromachined magnetic x/y/z scanner for parallel scanning probe applications, Microelectron. Eng. 53, 509–512 (2000)

    Article  Google Scholar 

  38. J.-J. Choi, H. Park, K.Y. Kim, J.U. Jeon: Electromagnetic micro x-y stage for probe-based data storage, J. Semicond. Technol. Sci. 1, 84–93 (2001)

    Google Scholar 

  39. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sens. Actuators A 64, 33–39 (1998)

    Article  Google Scholar 

  40. C.Q. Davis, D. Freeman: Using a light microscope to measure motions with nanometer accuracy, Opt. Eng. 37, 1299–1304 (1998)

    Article  Google Scholar 

  41. A. Pantazi, A. Sebastian, G. Cherubini, M.A. Lantz, H. Pozidis, H. Rothuizen, E. Eleftheriou: Control of MEMS-based scanning-probe data-storage devices, IEEE Trans. Control Syst. Technol. 15, 824–841 (2007)

    Article  Google Scholar 

  42. M. Despont, U. Drechsler, W. Häberle, M.A. Lantz, H. Rothuizen: A vibration resistant nanopositioner for mobile parallel-probe storage applications, J. Microelectromech. Syst. 16, 130–139 (2007)

    Article  Google Scholar 

  43. M.A. Lantz, G.K. Binnig, M. Despont, U. Drechsler: A micromechanical thermal displacement sensor with nanometer resolution, Nanotechnolology 16, 1089–1094 (2005)

    Article  Google Scholar 

  44. M.I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, P. Vettiger: Highly parallel data storage system based on scanning probe arrays, Appl. Phys. Lett. 77, 3299–3301 (2000)

    Article  Google Scholar 

  45. K. Fuchs, C. Friedrich, J. Weese: Viscoelastic properties of narrow-distribution poly(methyl metacrylates), Macromolecules 29, 5893–5901 (1996)

    Article  Google Scholar 

  46. U. Dürig, B. Gotsman: This estimate is based on a fluid dynamic deformation model of a thin film, private communication

    Google Scholar 

  47. J.D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1980)

    Google Scholar 

  48. H. Pozidis, P. Bächtold, G. Cherubini, E. Eleftheriou, C. Hagleitner, A. Pantazi, A. Sebastian: Signal processing for probe storage, Proc. Int. Conf. Acoust. Speech Signal Process. “ICASSP 2005”, Philadelphia 2005 (IEEE, Piscataway 2005) pp. 745-748

    Google Scholar 

  49. T. Loeliger, P. Bächtold, G.K. Binnig, G. Cherubini, U. Dürig, E. Eleftheriou, P. Vettiger, M. Uster, H. Jäckel: CMOS sensor array with cell-level analog-to-digital conversion for local probe data storage, ESSCIRC – Proc. 28th Eur. Solid-State Circuits Conf., ed. by A. Baschirotto, P. Malcovati (Univ. Bologna, Bologna 2002) pp. 623–626

    Google Scholar 

  50. C. Hagleitner, T. Bonaccio, H. Rothuizen, J. Lienemann, D. Wiesmann, G. Cherubini, J.G. Korvink, E. Eleftheriou: Modeling, design, and verification for the analog front-end of a MEMS-based parallel scanning-probe storage device, IEEE J. Solid State Circuits 42, 1779–1789 (2007)

    Article  Google Scholar 

  51. M. Schetzen: Nonlinear system modeling based on the Wiener theory, Proc. IEEE 69, 1557–1573 (1981)

    Article  Google Scholar 

  52. A.H. Sacks: Position signal generation in magnetic disk drives. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1995)

    Google Scholar 

  53. K.A.S. Immink: Coding Techniques for Digital Recorders (Prentice Hall, Hemel 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerd K. Binnig , Giovanni Cherubini , Michel Despont , Urs T. Dürig , Evangelos Eleftheriou , Haralampos Pozidis or Peter Vettiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Binnig, G.K. et al. (2010). The Millipede – A Nanotechnology-Based AFM Data-Storage System. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics