Skip to main content

Symbiotic Interaction Between Dinoflagellates and the Demosponge Lubomirskia baicalensis: Aquaporin-Mediated Glycerol Transport

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Abstract

Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which – according to the data presented herein – are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 ± 0.6 μg/g and 1.9 ± 0.5 μg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [14C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond to glycerol, a metabolite which might be supplied by the dinoflagellates and imported via the aquaporin channel into the sponge cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badaut J, Regli L (2004) Distribution and possible roles of aquaporin-9 in the brain. Neuroscience 129:971–981

    Article  CAS  PubMed  Google Scholar 

  • Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161

    Article  CAS  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plants and animal cells. Trends Biochem. Sci. 19, 421–425

    Article  CAS  PubMed  Google Scholar 

  • Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (2000) Current protocols in protein science. Wiley, Chichester, pp 2.0.1–2.8.17

    Google Scholar 

  • Corsetti FA, Olcott AN, Bakerman C (2006) The biotic response to Neoproterozoic snowball Earth. Palaegeog Palaeoclimat Pataeoecol 232:114–130

    Article  Google Scholar 

  • Diaz JP (1979) Variations, differenciations et fonctions des categories cellulaire de la demosponge Suberites massa Nardo, au cours du cycle biologique annuel et dans des coditions experimentales. Thèse de Université de Sciences et Technique Languedoc, pp 1–332

    Google Scholar 

  • Efremova SM (1981) The structure and embryonal development of the Baikalian sponge Lubomirskia baicalensis (Pallas) and relationships of Lubomirskiidae with other sponges. In: Morphogenesis in sponges. State University, Leningrad, pp 93–107

    Google Scholar 

  • Felsenstein J (1993) PHYLIP, ver. 3.5. University of Washington, Seattle

    Google Scholar 

  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113

    Article  CAS  Google Scholar 

  • Gambert S, Héliès-Toussaint C, Grynberg A (2005) Regulation of intermediary metabolism in rat cardiac myocyte by extracellular glycerol. Biochim Biophys Acta 1736:152–162

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Hernández J, Garcia-Rico L, Jara-Marini ME, Barraza-Guardado R, Weaver AH (2005) Concentration of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico. Marine Poll Bull 50:733–739

    Article  CAS  Google Scholar 

  • Gil TA, Kazarinova TF, Hramtsova TG, Zaitsev IV, Stom DJ (1997) The consumption of microorganisms by the Baikal sponge. Fresenius Environ Bull 6:444–449

    Google Scholar 

  • Gonzales JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242

    Article  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning an functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey, GF (1975) New spectrophotometric equations for determining chlorohyll a, b, c1, and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanzen 17:191–194

    Article  Google Scholar 

  • Kennish MJ (1994) Practical handbook of marine science. CRC Press, Boca Raton, IL

    Google Scholar 

  • Kong SE, Hall JC, Cooper D, McCauley RD (2000) Glutamine-enriched parenteral nutrition regulates the activity and expression of intestinal glutaminase. Biochim Biophys Acta 1475:67–75

    Article  CAS  PubMed  Google Scholar 

  • Kozhov M (1963) Lake Baikal and its life. W. Junk, The Hague

    Book  Google Scholar 

  • Kozhova OM, Izmesteva LR (1998) Lake Baikal: evolution and biodiversity. Brackhys, Leiden

    Google Scholar 

  • Masuda Y, Itskovich VB, Veinberg EV, Efremova SM (1997) Studies on the taxonomy and distribution of freshwater sponges in the Lake Baikal. In: Miyzaki N (ed) Animal community, environment and phylogeny in Lake Baikal. Otsuchi Marine Center/Ocean Research Institute, Tokyo, pp 21–41

    Google Scholar 

  • Metchnikoff E (1892) Lecons sur la pathologie comparée de l'inflammation. G Masson, Paris

    Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460

    Article  Google Scholar 

  • Müller WEG, Zahn RK, Kurelec B, Müller I, Uhlenbruck G, Vaith P (1981) Cell aggregation of the marine sponge Geodia cydonium. Identification of the lectin-producing cells. Eur J Cell Biol 24:28–35

    PubMed  Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Marine Ecol Progr Ser 178:205–219

    Article  Google Scholar 

  • Müller WEG, Koziol C, Wiens M, Schröder HC (2000) Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science, Amsterdam, pp 193–208

    Chapter  Google Scholar 

  • Pao GM, Wu LF, Johnson KD, Höfte H, Chrispeels MJ, Sweet G, Sanda, NN, Saier MH (1991) Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5:33–37

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Saier MH (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153:171–180

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ (2001) Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinoflagellates. J Eukaryot Microbiol 48:368–373

    Article  CAS  PubMed  Google Scholar 

  • Perović S, Schröder HC, Sudek S, Grebenjuk VA, Bate, R, Štifanić M, Müller IM, Müller WEG (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250

    Article  PubMed  Google Scholar 

  • Perović-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG (2004) A (1→3)-β-D-glucan recognition protein from the sponge Suberites domuncula: mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937.

    Article  CAS  PubMed  Google Scholar 

  • Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184

    CAS  Google Scholar 

  • Proksch P (1994) Defensive role for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655

    Article  CAS  PubMed  Google Scholar 

  • Rao J, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochem Biophys Acta 869:197–214

    CAS  Google Scholar 

  • Reiswig HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231–249

    Article  Google Scholar 

  • Reitner J, Wörheide G (2002) Non-lithistid Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 52–70

    Chapter  Google Scholar 

  • Reizer J, Reizer A, Saier MH (1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28:235–257

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal's littoral zone. 1. In situ pumping rate. Limnol Oceanogr 42:171–178

    Article  Google Scholar 

  • Schåcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, Stuttgart, pp 201–211

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Grebenjuk VA , Engel S, Müller IM, Müller WEG (2005) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678

    Article  CAS  PubMed  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer-Verlag, New York

    Book  Google Scholar 

  • Steidinger, K.A, Tangen K (1996) Dinoflagellates. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic, San Diego, CA, pp 387–584

    Chapter  Google Scholar 

  • Stryer L (1995) Biochemistry. Freeman, New York

    Google Scholar 

  • Thakur NL, Müller WEG (2005) Sponge-bacteria Association: a useful model to explore symbiosis in marine invertebrates. Symbiosis 39:109–116.

    CAS  Google Scholar 

  • Thakur NL, Perović-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biology 146:271–282

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacelet J (1971) Étude en microscopie electronique de l'association entre une cyanophycee chroococcale et une éponge du genre Verongia. J Microsc 12:363–380

    Google Scholar 

  • Wiens, M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321

    Article  CAS  Google Scholar 

  • Wiens M, Luckas B, Brümmer F, Ammar MSA, Steffen R, Batel R, Diehl-Seifert B, Schröder H C, Müller WEG (2003) Okadaic acid: a potential defense molecule for the sponge Suberites domuncula. Marine Biol 142:213–223

    Article  CAS  Google Scholar 

  • Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interaction explored. Biopress, Bristol, pp 111–151

    Google Scholar 

  • Zaloga GP (2006) Parenteral nutrition in adult inpatients with functioning gastrointestinal tracts: assessment of outcomes. Lancet 367:1101–1111

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Belikov, S.I., Kaluzhnaya, O.V., Chernogor, L., Krasko, A., Schröder, H.C. (2009). Symbiotic Interaction Between Dinoflagellates and the Demosponge Lubomirskia baicalensis: Aquaporin-Mediated Glycerol Transport. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_6

Download citation

Publish with us

Policies and ethics