Skip to main content

Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Abstract

The large sub-continent of Siberia is one of the richest mineral and oil resources on Earth. In its center, one region has gained prominence: Lake Baikal. It is one of the oldest, the deepest, and the lake with the greatest volume on Earth and is inhabited by more than 1,500 endemic species. It was Pallas (1771) who discovered in the lake a sponge species, Lubomirskia baicalensis (Porifera: Demospongiae), which dominates Lake Baikal's littoral-zone benthos. This sponge species has a distinguished, pronounced body plan which is composed of modules. The application of molecular biological and cell biological techniques has allowed an insight into the richness of the genomic regulatory systems of L. baicalensis. Predominantly present are those genes which are involved in body plan formation, e.g., signal transduction, stress response, and morphogenesis. The value of this species for the understanding of the evolutionary processes is reflected by recent studies on the monophyly of Lake Baikal endemic sponge species; L. baicalensis is a reference animal for other endemic sponges of this area, such as in the Tuva region (Lake Dzhegataj). In addition, L. baicalensis gained special interest for bio-medicine after the identification of the enzyme, silicatein, which catalyzes biosilica formation for the synthesis of the siliceous skeletal elements, the spicules. The sustainable use of this enzyme became feasible after the achievement of recombinant preparations. The huge impact of the recombinantly prepared biosilica for nano-technology in general cannot yet be quantified, e.g., in the field of new materials (biozirconia and biotitania) or in semiconductor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell T, Gamulin V, Perović-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG (2004) Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmem-brane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 59:41–50

    Article  CAS  PubMed  Google Scholar 

  • Adell T, Grebenjuk VA, Wiens M, Müller WEG (2003a) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213:421–434

    Article  CAS  PubMed  Google Scholar 

  • Adell T, Nefkens I, Müller WEG (2003b) Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS Lett 554:363–368

    Article  CAS  PubMed  Google Scholar 

  • Annandale N (1913) Notes on some sponges from Lake Baikal in the collection of the Imperial Academy of Science [St. Petersburg]. Ann Mus Zool Acad Sci St. Petersburg 18:18–101

    Google Scholar 

  • Annandale N (1914) Further notes on the sponges of Lake Baikal. Rec Indian Mus 10:137–148

    Google Scholar 

  • Brasier M, Green O, Shields G (1997) Ediacarian sponge spicule clusters from southwest Mongolia and the origins of the Cambrian fauna. Geology 25:303–306

    Article  CAS  Google Scholar 

  • Burkharov AA, Fialkov VA (1996) Geological structure of Lake Baikal bottom. Observation from “Pisces.” Nauka, Novosibirsk

    Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway Morris S (1998) The crucible of creation. Oxford University Press, Oxford

    Google Scholar 

  • Dybowski W (1880) Studien über die Spongien des Russischen Reiches mit besonderer Berücksichtigung des Baikal-Sees. Académie Impériale des Sciences, St. Petersburg, pp. 1–71.

    Google Scholar 

  • Dybowski W (1884) Some remarks upon the variability of form in Lubomirskia baicalensis, and upon the distribution of the Baikal sponges in general. Ann Mag Nat Hist/Zool 7:29–34

    Article  Google Scholar 

  • Eberhard JP (1751) Abhandlung von dem Ursprung der Perle. Rengerische Buchhandlung, Halle

    Google Scholar 

  • Efremova SM (2001) Porifera. Index of Animal species inhabiting Lake Baikal and its catchment area. Nauka, Novosibirsk, vol 1. Lake Baikal, Book 1, pp 182–192

    Google Scholar 

  • Galaziy GI (1988) Baikal v voprosakh i otvetakh. Publishing House “Mysyl,” Moscow, 286 pp

    Google Scholar 

  • Georgi J (1797) Geographisch-physikalische und Naturhistorische Beschreibung des Rußischen Reichs. Five volumes. F. Nicolovius, Königsberg

    Google Scholar 

  • Gmelin JG (1751) Reise durch Sibirien. Abram Vandenhoecks, Göttingen

    Google Scholar 

  • Goldberg EL, Chebykin EP, Vorobyova SS, Grachev MA (2005) Uranium signals of paleoclimate humidity recorded in sediments of Lake Baikal. Doklady Akademii Nauk 400:72–77

    Google Scholar 

  • Greze VN, Greze II (1958) Ozero Chagytai. Izvestija Vsesoyuznogo Geographiceskogo Obscestva 90:279–284

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. (1998) A neoproterozoic snowball earth. Science 281:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Humboldt A v (1844) Central Asien. Untersuchungen über die Gebirgsketten und die ver-gleichende Klimatologie. 2 vols. CJ Klemann, Berlin

    Google Scholar 

  • Itskovich VB, Belikov SI, Efremova SM, Masuda Y (1999) Phylogenetic relationships between Lubomirskiidae, Spongillidae and some marine sponges according partial sequences of 18S rDNA. Mem Queensland Mus 44:275–280

    Google Scholar 

  • Johansen H (1925) Der Baikalsee. Mitteilungen der Geographischen Gesellschaft München 18:1–200

    Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005a) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I: biological and biochemical studies. Naturwissenschaften 92:128–133

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005b) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia bai-calensis. Part II: Molecular biological studies. Naturwissenschaften 92:134–138

    Article  CAS  PubMed  Google Scholar 

  • Kozhov M (1963) Lake Baikal and its life. Junk, The Hague

    Book  Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myo-trophin. Eur J Biochem 267:4878–4887

    Article  CAS  PubMed  Google Scholar 

  • Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG (2002) Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 21:67–80

    Article  CAS  PubMed  Google Scholar 

  • Lesseps JBB de (1791) Reise von Kamtschatka nach Frankreich. Johannes F Hartknoch, Riga

    Google Scholar 

  • Loomis WF (1988) Four billion years. Sinauer, Sunderland, MA

    Google Scholar 

  • Manconi R, Pronzato R (2000) Suborder Spongillina subord. Nov.: freshwater sponges. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 921–1019

    Google Scholar 

  • Martinson GG (1948) Fossil sponges from the Tunka-Depression in Prebaikal. [Iskopaemye gubki iz Tunkinskoi kotloviny v Pribaikalye]. Doklady Akademii Nauk SSSR 61:897–900 (in Russian)

    Google Scholar 

  • Masuda Y, Itskovich VB, Veinberg EV, Efremova SM (1997) Studies on the taxonomy and distribution of freshwater sponges in the Lake Baikal. In: Miyzaki N (ed) Animal community, environment and phylogeny in Lake Baikal. Otsuchi Marine Center/Ocean Research Institute, Tokyo, pp. 21–41

    Google Scholar 

  • Mats VD (1990) The original and evolution of the Baikal basin. In: Kvasov DD (ed) History of lakes of the USSR: Ladozhskoye, Onezhskoye, Pskovsko, Chudskoye, Baikal, Khanka. Nauka, Leningrad, pp 167–19

    Google Scholar 

  • Mats VD, Fujii S, Mashiko K, Osipov EY, Yefrimova IM, Klimansky AV (2000) Changes in Lake Baikal water levels and runoff direction in the Quaternary period. In: Minoura K (ed) Lake Baikal. Elsevier, Amsterdam, pp 15–34

    Chapter  Google Scholar 

  • Mehl-Janussen D, Eckert C, Veinberg EV (2000) Investigations on the endemic freshwater Porifera of Lake Baikal (Lubomirskiidae): status and perspectives. Terra Nostra 9:49–59

    Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    Article  CAS  Google Scholar 

  • Müller GF (1732–1764) Sammlungen russischer Geschichte. St. Petersburg

    Google Scholar 

  • Müller GF (1779) Sammlung Rußischer Geschichte des Herrn Geheimraths Müllers in Moscow. Effenbach: U. Weiß; five volumes

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82:321–329

    Article  PubMed  Google Scholar 

  • Müller WEG (ed) (1998a) Molecular evolution: evidence for monophyly of Metazoa. Progress in Molecular Subcellular Biology, vol 19. Springer Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  • Müller WEG (1998b) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85:11–25

    Article  PubMed  Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comparative Biochemistry and Physiology [A] 129:433–460

    Article  Google Scholar 

  • Müller WEG (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17:481–491

    Article  PubMed  Google Scholar 

  • Müller WEG, Müller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integrative and Comparative Biology 43:281–292

    Article  PubMed  Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: Primmorphs from Suberites domuncula. Mar Ecol Prog Series 178:205–219

    Article  Google Scholar 

  • Müller WEG, Koziol C, Wiens M, Schröder HC (2000) Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science, Amsterdam, pp 193–208

    Chapter  Google Scholar 

  • Müller WEG, Schröder HC, Skorokhod A, Bünz C, Müller IM, Grebenjuk VA (2001) Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene 276:161–173

    Article  PubMed  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Wiens M, Müller IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein – collagen – myotrophin. Prog Mol Subcell Biol 33:195–22

    Article  PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Lorenz B, Krasko A (2004a) Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent No. 1320624

    Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004b) The Bauplan of the Urmetazoa: The basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Schröder HC (2005a) Biosilica, the raw material of the coming millennium: sustainable production in Lake Baikal. Science First Hand 3:26–35 (in Russian)

    Google Scholar 

  • Müller WEG, Krasko A, Schröder HC (2005b) In vitro and in vivo degradation or synthesis of silicon dioxide and silicones, useful e.g., for treating silicosis or to prepare prosthetic materials, using a new silicase enzyme. Patent No. DE10246186.

    Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006a) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006b) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41

    Article  PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006c) Speciation of sponges in Baikal-Tuva region (an outline). J Zool Syst Evol Res J 44:105–117

    Article  Google Scholar 

  • Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006d) Novel photore-ception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Wang XH, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71

    Article  CAS  PubMed  Google Scholar 

  • William A (1814) Picturesque representations of the dress and manners of the Russians. John Murray, London

    Google Scholar 

  • Pallas PS (1771) Reise durch die verschiedenen Provinzen des russischen Reiches. Theil 3-Buch 2. Kayserliche Academie der Wissenschaften, St. Petersburg

    Google Scholar 

  • Pallas PS (1787) Charakteristik der Thierpflanzen. Raspische Buchhandlung, Nürnberg

    Google Scholar 

  • Pechenik JA (2000) Biology of the invertebrates. McGraw-Hill, Boston, MA

    Google Scholar 

  • Pecher IA (2002) Gas hydrates on the brink. Nature 420:622–623

    Article  CAS  PubMed  Google Scholar 

  • Pilcher H (2005) Back to our roots. Nature 435:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Popovskaya GI, Genkal SI, Likhoshway YV (2002) Diatoms of the plankton of Lake Baikal. Nauka, Novosibirsk

    Google Scholar 

  • Pronzato R, Manconi R. 2001. Atlas of European freshwater sponges. Ann Mus Civ St Nat Ferrara 4:3–64

    Google Scholar 

  • Reitner J, Wörheide G (2002) Non-lithistid Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of sponges. Kluwer/Plenum, New York, pp 52–70

    Google Scholar 

  • Rezvoj P (1927) Notes on sponges from the Lake Dzhegataj-kul in the Urjankhaj region. Doklady Akademii Nauk SSSR 3/8:296–300

    Google Scholar 

  • Rezvoj PD (1936) Süßwasserschwämme (Fam. Spongillidae et Lubomirskiidae). Faune De L'URSS vol. 2 (no. 2)]. Moskau Leningrad: Izdatelstvo Akademii Nauk SSSR 105–124 (in German)

    Google Scholar 

  • Röpstorf P, Reitner J (1994) Morphologie einiger Süßwasserporoifera (Baikalospongia bacil-lifera, Lubomirskia baicalensis, Swartschweskia papyracea) des Baikal-Sees (Sibirien, Rußland). Berliner Geowiss Abh E13:507–525

    Google Scholar 

  • Sankov VA, Parfeevets AV, Miroshnitchenko AI, Lukhnev A, Arzhannikova AV (2003) Cenozoic dynamics of Baikal and Khubsugul basins. Berliner Paläontol Abh 4: 49–54

    Google Scholar 

  • Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeling within Lake Baikal's littoral zone. 1. In situ pumping rate. Limnol Oceanogr 42:171–178

    Article  Google Scholar 

  • Schäcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer Verlag, Stuttgart/New York, pp 201–211

    Google Scholar 

  • Scherer AN (1820) Versuch einer systematischen Uebersicht der Heilquellen des Russischen Reichs. Akademie der Wissenschaften, St. Petersburg

    Google Scholar 

  • Schröder HC, Efremova SM, Itskovich VB, Belikov S, Masuda Y, Krasko A, Müller IM, Müller WEG (2003a) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool Sys Evol Res 41:80–86

    Article  Google Scholar 

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003b) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:249–268

    Article  PubMed  Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381 665–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder HC, Boreiko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mat Res Part B: Appl Biomat 75B: 387–392

    Article  CAS  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Krasko A, Tahir MN, Tremel W, Eckert C, Ushijima H. Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: Matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95: 6234–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer-Verlag, New York

    Book  Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh (E) 9:293–329

    Google Scholar 

  • Strahlenberg PJ (1730) Das Nord- und Ostliche Theil von Europa und Asia. Autoris, Stockholm

    Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidin-tagged silicatein. Chem Commun 24:2848–2849

    Article  Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiß S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun 44:5533–5535

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Wiens M, Müller WEG (2006) Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. Can J Zool/Rev Can Zool 84:307–321

    Article  CAS  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and Mago Nashi. Dev Genes Evol 216:229–242

    Article  CAS  PubMed  Google Scholar 

  • Winter E, Uschmann G, Jarosch GDG (1968) Messerschmidt Forschungsreise durch Sibirien 1720–1727. Akademie-Verlag, Berlin

    Google Scholar 

  • Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie 12: 253–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Schröder, H.C., Belikov, S.I. (2009). Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_17

Download citation

Publish with us

Policies and ethics