Skip to main content

The Application of Silicon and Silicates in Dentistry: A Review

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

Abstract

Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral R, Ozcan M, Bottino MA, Valandro LF (2006) Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 22:283–290

    Article  CAS  PubMed  Google Scholar 

  • Atai M, Yassini E, Amini M, Watts DC (2007) The effect of a leucite-containing ceramic filler on the abrasive wear of dental composites. Dent Mater 23:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Attin T, Buchalla W, Kielbassa AM, Hellwig E (1995) Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater 11:359–362

    Article  CAS  PubMed  Google Scholar 

  • Bayne SC, Heymann HO, Swift EJ Jr (1994) Update on dental composite restorations. J Am Dent Assoc 125:687–701

    Article  CAS  PubMed  Google Scholar 

  • Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M (1998) A characterization of first-generation flowable composites. J Am Dent Assoc 129:567–577

    Article  CAS  PubMed  Google Scholar 

  • Bitter K, Paris S, Hartwig C, Neumann K, Kielbassa AM (2006) Shear bond strength of different substrates bonded to lithium disilicate ceramics. Dent Mater J 25:493–502

    Article  CAS  PubMed  Google Scholar 

  • Buonocore MG (1955) A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34:849–853

    Article  CAS  PubMed  Google Scholar 

  • Burke FJ, Fleming GJ, Nathanson D, Marquis PM (2002) Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 4:7–22

    CAS  PubMed  Google Scholar 

  • Clelland NL, Pagnotto MP, Kerby RE, Seghi RR (2005) Relative wear of flowable and highly filled composite. J Prosthet Dent 93:153–157

    Article  CAS  PubMed  Google Scholar 

  • Condon JR, Ferracane JL (1997) In vitro wear of composite with varied cure, filler level, and filler treatment. J Dent Res 76:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Edelhoff D, Abuzayeda M, Yildirim M, Spiekermann H, Marx R (2000) Adhäsion von Kompositen an hochfesten Strukturkeramiken nach unterschiedlicher Oberflächenbehandlung. Dtsch Zahnärztl Z 55:617–623

    CAS  Google Scholar 

  • Eliades G, Kakaboura A, Palaghias G (1998) Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dent Mater 14:57–63

    Article  CAS  PubMed  Google Scholar 

  • Ernst, CP (2003) Eine aktuelle Standortbestimmung zahnärztlicher Füllungskomposite. Zahnärztliche Mitteilungen 93:30–40

    Google Scholar 

  • Faltermeier A, Rosentritt M, Faltermeier R, Reicheneder C, Mussig D (2007) Influence of filler level on the bond strength of orthodontic adhesives. Angle Orthod 77:494–498

    Article  PubMed  Google Scholar 

  • Ferracane JL (1989) In vitro evaluation of composite resins. Structure-property relationships. Development of assessment criteria, Trans Acad Dent Mater 2:6–35

    Google Scholar 

  • Ferracane JL (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Tay FR (2003) Technique sensitivity in bonding to vital, acid-etched dentin. Oper Dent 28:3–8

    CAS  PubMed  Google Scholar 

  • Fortin D, Vargas MA (2000) The spectrum of composites: new techniques and materials. J Am Dent Assoc 131:26S–30S

    Article  PubMed  Google Scholar 

  • Frankenberger R, Taschner R, Lohbauer U, Krämer NH, Rosenbusch S, Reich SM (2006) Aktuelle Aspekte der intraoralen Keramikreparatur. ZWR 115:70–75

    Article  Google Scholar 

  • Gasser O (1987) Glass ionomer cements: the present and future from the viewpoint of the science of materials Schweiz Monatsschr Zahnmed 97:328–335

    CAS  Google Scholar 

  • Geurtsen W (1999) Kunststoffüllung. In: Praxis der Zahnheilkunde Band 2, Kariologie und Füllungstherapie, Urban & Schwarzenberg Verlag München, pp 179–211

    Google Scholar 

  • Guggenberger R (1989) Rocatec system – adhesion by tribochemical coating. Dtsch Zahnarztl Z 44:874–876

    CAS  PubMed  Google Scholar 

  • Hefferren JJ (1976) A laboratory method for assessment of dentifrice abrasivity. J Dent Res 55:563–573

    Article  CAS  PubMed  Google Scholar 

  • Heikkinen TT, Lassila LV, Matinlinna JP, Vallittu PK (2007) Effect of operating air pressure on tribochemical silica-coating. Acta Odontol Scand 65:241–248

    Article  CAS  PubMed  Google Scholar 

  • Hervas-Garcia A, Martinez-Lozano MA, Cabanes-Vila J, Barjau-Escribano A, Fos-Galve P (2006) Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal 11:E215–20

    Google Scholar 

  • Hickel R, Kunzelmann KH (1999) Glasionomer- und Kompomerfüllung, in: Praxis der Zahnheilkunde Band 2, Kariologie und Füllungstherapie, Urban & Schwarzenberg Verlag München, pp 155–172

    Google Scholar 

  • Hill RG, Wilson AD (1988) Some structural aspects of glasses used in ionomer cements. Glass Technol 29:150–188

    CAS  Google Scholar 

  • Höglund C, van Dijken J, Olofsson AL (1992) A clinical evaluation of adhesively luted ceramic inlays. A two year follow-up study. Swed Dent J 16:169–171

    PubMed  Google Scholar 

  • Höland W, Schweiger M, Frank M, Rheinberger V (2000) A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res 53:297–303

    Article  PubMed  Google Scholar 

  • Ikemura K, Tay FR, Kouro Y, Endo T, Yoshiyama M, Miyai K, Pashley DH (2003) Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater 19:137–146

    Article  CAS  PubMed  Google Scholar 

  • Inokoshi S, Willems G, Van Meerbeek B, Lambrechts P, Braem M, Vanherle G (1993) Dual-cure luting composites: Part I: filler particle distribution. J Oral Rehabil 20:133–146

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Finger WJ, Mueller M (1994) Effect of filler content of restorative resins on retentive strength to acid-conditioned enamel. Am J Dent 7:161–166

    CAS  PubMed  Google Scholar 

  • Inoue S, Van Meerbeek B, Vargas M, Lamprechts P, Vanherle G (1999) Adhesion mechanism of self-etching adhesives. Advanced Adhesive Dentistry Proceedings book. 3rd International Kuraray Symposium Granada. Kuraray Europe GmbH, Medical Division, pp 131–148

    Google Scholar 

  • Joiner A, Weader E, Cox TF (2004) The measurement of enamel wear of two toothpastes. Oral Health Prev Dent 2:383–388

    PubMed  Google Scholar 

  • Kent BE, Lewis BG, Wilson AD (1973) The properties of a glass ionomer cement. Br Dent J 135:322–326

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Ong JL, Okuno O (2002) The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 87:642–649

    Article  CAS  PubMed  Google Scholar 

  • Kwon YH, Kwon TY, Ong JL, Kim KH (2002) Light-polymerized compomers: coefficient of thermal expansion and microhardness. J Prosthet Dent 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Pinzon LM, O'Keefe KL, Powers JM (2006) Effect of filler addition on the bonding parameters of dentin bonding adhesives bonded to human dentin. Am J Dent 19:23–27

    PubMed  Google Scholar 

  • Li Q, Jepsen S, Albers HK, Eberhard J (2006) Flowable materials as an intermediate layer could improve the marginal and internal adaptation of composite restorations in Class-V-cavities. Dent Mater 22:250–257

    Article  CAS  PubMed  Google Scholar 

  • Lim BS, Ferracane JL, Condon JR, Adey JD (2002) Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater 18:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lin CT, Lee SY, Keh ES, Dong DR, Huang HM, Shih YH (2000) Influence of silanization and filler fraction on aged dental composites. J Oral Rehabil 27:919–926

    Article  CAS  PubMed  Google Scholar 

  • Lutz F, Phillips RW (1983) A classification and evaluation of composite resin systems. J Prosthet Dent 50:480–488

    Article  CAS  PubMed  Google Scholar 

  • Mackert JR Jr, Butts MB, Fairhurst CW (1996) The effect of the leucite transformation on dental porcelain expansion. Dent Mater 2:32–36

    Article  Google Scholar 

  • Manhart J, Chen H, Hamm G, Hickel R (2004) Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 29:481–508

    PubMed  Google Scholar 

  • Martin R, Paul SJ, Luthy H, Scharer P (1997) Dentin bond strength of Dyract Cem. Am J Dent 10:27–31

    CAS  PubMed  Google Scholar 

  • Matinlinna JP, Vallittu PK (2007) Bonding of resin composites to etchable ceramic surfaces – an insight review of the chemical aspects on surface conditioning. J Oral Rehabil 34:622–630

    Article  CAS  PubMed  Google Scholar 

  • McLean JW, Hughes TH (1965) The reinforcement of dental porcelain with ceramic oxides. Br Dent J 119:251–267

    CAS  PubMed  Google Scholar 

  • McLean JW, Nicholson JW, Wilson AD (1994) Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 25:587–9

    CAS  PubMed  Google Scholar 

  • Mehl A, Kunzelmann KH, Folwaczny M, Hickel R (2004) Stabilization effects of CAD/CAM ceramic restorations in extended MOD cavities. J Adhes Dent 6:239–245

    PubMed  Google Scholar 

  • Mitra SB, Wu D, Holmes BN (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390

    Article  CAS  PubMed  Google Scholar 

  • Moodley D, Grobler SR (2003) Compomers: adhesion and setting reactions. SADJ 58:21, 24–28

    Google Scholar 

  • Moore C, Addy M (2005) Wear of dentine in vitro by toothpaste abrasives and detergents alone and combined. J Clin Periondontol 32:1242–1246

    Article  CAS  Google Scholar 

  • Müller H, Olsson S, Söderholm KJ (1997) The effect of comonomer composition, silane heating, and filler type on aqueous TEGDMA leachability in model resin composites. Eur J Oral Sci 105:362–368

    Article  PubMed  Google Scholar 

  • Nicholson JW, Brookman PJ, Lacy OM, Wilson AD (1988) Fourier transform infrared spectroscopic study of the role of tartaric acid in glass-ionomer dental cements. J Dent Res 67:1451–1454

    Article  CAS  PubMed  Google Scholar 

  • Nunes MF, Swift EJ, Perdigao J (2001) Effects of adhesive composition on microtensile bond strength to human dentin. Am J Dent 14:340–343

    CAS  PubMed  Google Scholar 

  • Özcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA (2007) Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 10:1276–1282

    Article  CAS  Google Scholar 

  • Peutzfeldt A (1995) Dual-cure resin cements: in vitro wear and effect of quantity of remaining double bonds, filler volume, and light curing. Acta Odontol Scand 53:29–34

    Article  CAS  PubMed  Google Scholar 

  • Phillips RW (1991) Skinner's science of dental materials, 9th edition. Philadelphia: WB Saunders, pp 215–48

    Google Scholar 

  • Ruse ND (1999) What is a “compomer”? J Can Dent Assoc 65:500–504

    CAS  PubMed  Google Scholar 

  • Sabbagh J, Ryelandt L, Bacherius L, Biebuyck JJ, Vreven J, Lambrechts P, Leloup G (2004) Characterization of the inorganic fraction of resin composites. J Oral Rehabil 31:1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Schulze KA, Zaman AA, Söderholm KJ (2003) Effect of filler fraction on strength, viscosity and porosity of experimental compomer materials. J Dent 31:373–382

    Article  CAS  PubMed  Google Scholar 

  • Schwarze T (2004) Mineral Trioxide Aggregate (MTA) – Eine Literaturübersicht, Endodontie 13:211–221

    Google Scholar 

  • Shaw AJ, Carrick T, McCabe JF (1998) Fluoride release from glass-ionomer and compomer restorative materials: 6-month data. J Dent 26:355–359

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Leinfelder KF, Kawai K, Tsuchitani Y (1995) Effect of particle variation on wear rates of posterior composites. Am J Dent 8:173–178

    CAS  PubMed  Google Scholar 

  • Tay FR, Moulding KM, Pashley DH (1999) Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent 1:103–117

    CAS  PubMed  Google Scholar 

  • Tay FR, Pashley EL, Huang C, Hashimoto M, Sano H, Smales RJ, Pashley DH (2001) The glass-ionomer phase in resin-based restorative materials. J Dent Res 80:1808–1812

    Article  CAS  PubMed  Google Scholar 

  • Tjandrawinata R, Irie M, Yoshida Y, Suzuki K (2004) Effect of adding spherical silica filler on phys-ico-mechanical properties of resin modified glass-ionomer cement. Dent Mater J 23:146–154

    Article  PubMed  Google Scholar 

  • Torabinejad M, Hong CU, Pitt Ford TR (1995) Physical properties of a new root end filling material. J Endod 21:349–353

    Article  CAS  PubMed  Google Scholar 

  • Torii Y, Itou K, Itota T, Hama K, Konishi N, Nagamine M, Inoue K (1999) Influence of filler content and gap dimension on wear resistance of resin composite luting cements around a CAD/CAM ceramic inlay restoration. Dent Mater J 18: 453–461

    Article  CAS  PubMed  Google Scholar 

  • Van Dijken JW, Wing KR, Ruyter IE (1989) An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontol Scand 4: 401–407

    Article  Google Scholar 

  • Van Meerbeek B, Inokoshi S, Davidson CL, De Gee AJ, Lambrechts P, Braem M, Vanherle G (1994) Dual cure luting composites – Part II: clinically related properties. J Oral Rehabil 21:57–66

    Article  PubMed  Google Scholar 

  • Van Meerbeek B, De Munck, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Labrechts P, Vanherle G (2003) Buonocore Memorial Lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 28-3:215–235

    Google Scholar 

  • Van Noort R (2002) Dental Ceramics. In: Van Noort R (ed) Introduction to Dental Materials, 2nd edition. St Louis: Mosby, pp 231–246

    Google Scholar 

  • Wang Y, Spencer P (2005) Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res 82:141–145

    Article  Google Scholar 

  • Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G (1992) A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater 8:310–319

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lührs, AK., Geurtsen, W. (2009). The Application of Silicon and Silicates in Dentistry: A Review. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_16

Download citation

Publish with us

Policies and ethics