Skip to main content

Modelling the Skeletal Architecture in a Sponge with Radiate Accretive Growth

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

  • 1944 Accesses

Abstract

A mathematical model of the skeletogenesis and the influence of the physical environment on the morphogenesis of a branching sponge, for example, Haliclona oculata or Lubomirskia baikalensis, is presented. In the model, we assume that the radiate accretive growth process is nutrient limited. With this model we can generate in a simulated accretive growth process branching objects with a similarity to the branching sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E.R. Abraham. The fractal branching of an arborescent sponge. Mar. Biol.138, 503–510 (2001).

    Article  Google Scholar 

  • T. Adell, I. Nefkens, and W.E.G. Müller. Polarity factor ‘frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pina-coderm. FEBS554, 363–368 (2003)

    Article  CAS  Google Scholar 

  • N. Boury-Esnault and K. Ruetzler, Thesaurus of sponge morphology. Smithson. Contr. Zool.596, 1–55 (1997)

    Article  Google Scholar 

  • J.S. Bowerbank. A monograph of the British Spongiadae VIII, London Royal Society, London, 1876

    Google Scholar 

  • E. Brener, K. Kassner, and H. Mueller-Krumbhaar. Pattern formation in first order phase transitions. Int. J. Modern Phys. C3, 825–851 (1992)

    Article  Google Scholar 

  • W.H. de Weerdt, A systematic revision of the north-eastern Atlantic shallow-water Haplosclerida (Porifera, Demospongiae), part (II): (C)halinidae, Beafortia 36, 81–165 (1986)

    Google Scholar 

  • J.A. Kaandorp and J.E. Kübler. The algorithmic beauty of seaweeds, sponges and corals. Springer-Verlag, Heidelberg, 2001

    Book  Google Scholar 

  • J.A. Kaandorp, P.M.A. Sloot, R.M.H. Merks, R.P.M. Bak, M.J.A. Vermeij, and C. Maier. Morphogenesis of the branching reef coral Madracis mirabilis. Proc. Roy. Soc. Lond. B272, 127–133, 2005

    Article  Google Scholar 

  • G. Le Pennec, et al. Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron a review. J. Biotechnol.100, 93–108 (2003)

    Article  Google Scholar 

  • R.M.H. Merks, A.G. Hoekstra, J.A. Kaandorp, and P.M.A. Sloot. Branching and morphologic plasticity in corals: the polyp oriented approach. J. Theor. Biol.228, 559–576, 2004

    Article  Google Scholar 

  • W.E.G. Müller, et al. Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein – collagen- myotrophin. Prog. Mol. Subcell. Biol.33, 195–231 (2003)

    Article  Google Scholar 

  • W.E.G. Müller, et al. Bauplan of urmetazoa: basis for genetic complexity of metazoa. Int. Rev. Cytol.235, 53–92 (2004)

    Article  Google Scholar 

  • B. van Rietbergen et al. Tissue stresses and strain in trabeculae of a canine proximal femur. J. Biomech.32, 443–451 (1999)

    Article  Google Scholar 

  • C.J. Vosmaer On the distinction between the genera Axinella, Phakelia, Acantella a.o. Abdruck aus den Zoologischen Jahrbüchern, Verlag von Gustav Fischer, Jena, 1912

    Google Scholar 

  • F. Wiedenmayer. Shallow-water sponges of the western Bahamas. Birkhäuser, Basel, 1977

    Book  Google Scholar 

  • A.G. Wischmeyer et al. Theoretical constraints on the uptake of silicic acid species by marine diatoms. Mar. Chem.29, 13–29 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaandorp, J.A. (2009). Modelling the Skeletal Architecture in a Sponge with Radiate Accretive Growth. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_10

Download citation

Publish with us

Policies and ethics