Skip to main content

7. From the Cluster to the Liquid: Ab-Initio Calculations on Realistic Systems Based on First-Principles Molecular Dynamics

  • Part II Simulation from Nanoscopic Systems to Macroscopic Materials
  • Chapter
  • First Online:
Computational Materials Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 642))

  • 2084 Accesses

Abstract

In both clusters and disordered systems the determination of structural properties often relies on qualitative interpretations of experimental data. First-principles molecular dynamics provides a reliable atomic-scale tool to optimize geometries and follow the dynamical evolution at different temperatures. We present three examples of application of first-principles molecular dynamics to the study of finite systems and disordered, bulk networks. In the first case, devoted to the copper oxide clusters CuO2 and CuO6, the account of temperature effects and a careful search of all isomer allows to complement effectively photoelectron spectroscopy data. In the second example, we analyze the behavior of the C60 fullerene when one or two silicon atoms are inserted in the cage to replace carbon atoms. Silicon atoms correspond to chemically reactive sites of the fullerenes, giving rise to local structural distortions. Then, we describe the determination of the structure for liquid SiSe2 at thermal equilibrium. The microscopic origins of intermediate range order are rationalized in terms of network connectivity and specific features appearing in the structure factors. Overall, first-principles molecular dynamics appears as a convincing method to corroborate experimental work and make reliable predictions based on well-established electronic structure techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Google Scholar 

  • 2. L.-S. Wang and H. Wu, Zeit. für Physikalische Chemie 203, 45 (1998).

    Google Scholar 

  • 3. P.S. Salmon, Proc. R. Soc. London A 437, 591 (1992).

    Google Scholar 

  • 4. P.S. Salmon, Proc. R. Soc. London A 445, 351 (1994).

    Google Scholar 

  • 5. D. Marx and J. Hütter, ‘Ab Initio molecular dynamics: theory and implementation’, in Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol.1, 301-449 (2000)

    Google Scholar 

  • 6. M. Wilson and P.A. Madden, J. Phys. Condens. Matter 5, 6833 (1993).

    Google Scholar 

  • 7. S.M. Foiles, M.I. Baskes and M.S. Daw, Phys. Rev. B 33, 7983 (1986).

    Google Scholar 

  • 8. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Google Scholar 

  • 9. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Google Scholar 

  • 10. J.M. Zuo, M. Kim, M.O’Keefe and J.C.H. Spence, Nature 401, 49 (1999).

    Google Scholar 

  • 11. R.E. Dickerson, H.B. Gray and G.P. Haight, Chemical Principles (W.A. Benjamin inc., Menlo Park, California, 1974).

    Google Scholar 

  • 12. P. Vashishta, R.K. Kalia, G.A. Antonio and I. Ebbsjö, Phys. Rev. Lett. 62, 1651 (1989).

    Google Scholar 

  • 13. R.P. Feynmann, Phys. Rev. 56, 340 (1939).

    Google Scholar 

  • 14. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  • 15. S. Nosé, Mol. Phys. 52, 255 (1984); W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Google Scholar 

  • 16. P. Blöchl and M. Parrinello, Phys. Rev. B 45, 9413 (1992).

    Google Scholar 

  • 17. Y. Pouillon and C. Massobrio, Chem. Phys. Lett. 331, 290 (2000).

    Google Scholar 

  • 18. Y. Pouillon and C. Massobrio, Chem. Phys. Lett. 356, 469 (2002).

    Google Scholar 

  • 19. M. Celino and C. Massobrio, Comp. Mat. Science 24, 28 (2002).

    Google Scholar 

  • 20. M. Celino and C. Massobrio, Comp. Physics Comm. 147 166 (2002).

    Google Scholar 

  • 21. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Google Scholar 

  • 22. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Google Scholar 

  • 23. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Google Scholar 

  • 24. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Google Scholar 

  • 25. K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).

    Google Scholar 

  • 26. I.M.L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt and T.P. Martin, J. Chem. Phys. 111, 6787 (1999).

    Google Scholar 

  • 27. P. Császár and P. Pulay, J. Molec. Struc. 114, 31 (1984).

    Google Scholar 

  • 28. J. Hutter, H.P. Lüthi and M. Parrinello, Comp. Mat. Science 2, 244 (1994).

    Google Scholar 

  • 29. F. Tassone, F. Mauri and R. Car, Phys. Rev. B 50, 10561 (1994).

    Google Scholar 

  • 30. Code CPMD, version 3.0f, developed by J. Hutter, P. Ballone, M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M. Parrinello, M. Tuckerman, at MPI für Festkörperforschung and IBM Zurich Research Laboratory (1990-1997).

    Google Scholar 

  • 31. H. Wu, S.R. Desai and L.S. Wang, J. Chem. Phys. 103, 4363 (1995).

    Google Scholar 

  • 32. H. Wu, S.R. Desai and L.S. Wang, J. Phys. Chem. 101, 2103 (1997).

    Google Scholar 

  • 33. K. Hedberg, Science 254, 410 (1991).

    Google Scholar 

  • 34. W. Andreoni, F. Gigy and M. Parrinello, Chem. Phys. Lett. 190, 159 (1992).

    Google Scholar 

  • 35. W. Andreoni, A. Curioni, K. Holczer, K. Prassides, M. Keshavarz-K., J.-C. Hummelen and F. Wudl, J. Am. Chem. Soc. 118, 11335 (1996).

    Google Scholar 

  • 36. R. West, Angew. Chemie 99, 1231 (1987).

    Google Scholar 

  • 37. R.E. Dickerson, H.B. Gray and G.P. Haight, Chemical Principles (W.A. Benjamin inc., Menlo Park, California, 1974).

    Google Scholar 

  • 38. T. Guo, C. Jin and R.E. Smalley, J. Phys. Chem. 95, 4948 (1991).

    Google Scholar 

  • 39. N. Kurita, K. Kobayashi, H. Kumahora and K. Tago, Phys. Rev. B 48, 4850 (1993).

    Google Scholar 

  • 40. S.R. Elliott, Phys. Rev. Lett. 67, 711 (1991).

    Google Scholar 

  • 41. C. Massobrio, A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 2342 (1998).

    Google Scholar 

  • 42. C. Massobrio, A. Pasquarello and R. Car, J. Am. Chem. Soc. 121, 2943 (1999).

    Google Scholar 

  • 43. I.T. Penfold and P.S. Salmon, Phys. Rev. Lett. 67, 97 (1991).

    Google Scholar 

  • 44. I. Petri, P. S. Salmon and H.E. Fischer, Phys. Rev. Lett. 84, 2413 (2000).

    Google Scholar 

  • 45. S. Susman, R.N. Johnson, D.L. Price and K.J. Volin, Mat. Res. Soc. Symp. Proc. 61, 91 (1986).

    Google Scholar 

  • 46. A. Pradel, G. Taillades, M. Ribes, H. Eckert, J. Non-Cryst. Solids 188, 75 (1995).

    Google Scholar 

  • 47. C. Rau, P. Armand, A. Pradel, C.P.E. Varsamis, E.I. Kamitsos, D. Granier, A. Ibanez, E. Philippot, Phys. Rev. B 63, 184204 (2001).

    Google Scholar 

  • 48. P. Boolchand, W.J. Bresser, Nature 410, 1070 (2001).

    Google Scholar 

  • 49. P. Walsh, W. Li, R.K. Kalia, A. Nakano, P. Vashishta, S. Saini, Appl. Phys. Lett. 78, 3328 (2001).

    Google Scholar 

  • 50. M. Tenhover, M.A. Hazle, R.K. Grasselli, Phys. Rev. Lett. 51, 404 (1983).

    Google Scholar 

  • 51. M. Tenhover, M.A. Hazle, R.K. Grasselli, C.W. Thompson, Phys. Rev. B 28, 4608 (1983).

    Google Scholar 

  • 52. J.E. Griffiths, M. Malyj, G.P. Espinoso, J.P. Remeika, Phys. Rev. B 30, 6978 (1984).

    Google Scholar 

  • 53. S. Susman, R.W. Johnson, D.L. Price, K.J. Volin in: Defects in Glasses, eds. F.L. Galeener, D.L. Griscom and M.J. Weber, vol. 61 Symp. Proc. (Mat. Res. Soc. Pittsburgh, PA, 1986) p. 91.

    Google Scholar 

  • 54. S.R. Elliott, Physics of Amorphous Materials, Longman Group UK Limited, Essex, 1990.

    Google Scholar 

  • 55. M. Tenhover, R.D. Boyer, R.S. Henderson, T.E. Hammond, G.A. Shreve, Solid St. Comm. 65, 1517 (1988).

    Google Scholar 

  • 56. L.F. Gladden, S.R. Elliott, Phys. Rev. Lett. 59, 908 (1987).

    Google Scholar 

  • 57. L.F. Gladden, S.R. Elliott, J. Non-Cryst. Solids 109, 211 (1989).

    Google Scholar 

  • 58. L.F. Gladden, S.R. Elliott, J. Non-Cryst. Solids 109, 223 (1989).

    Google Scholar 

  • 59. L.F. Gladden, J. Non-Cryst. Solids 123, 22 (1990).

    Google Scholar 

  • 60. W. Li, R.K. Kalia, P. Vashishta, Phys. Rev. Lett. 77, 2241 (1996).

    Google Scholar 

  • 61. W. Li, R.K. Kalia, P. Vashishta, Europhys. Lett. 35, 103 (1996).

    Google Scholar 

  • 62. K. Jackson, S. Grossman, Phys. Rev. B 65, 012206 (2001).

    Google Scholar 

  • 63. M. Celino, PhD dissertation, Université Louis Pasteur Strasbourg, 2002.

    Google Scholar 

  • 64. G. Antonio, R.K. Kalia, A. Nakano and P. Vashishta, Phys. Rev. B 45, 7455 (1992).

    Google Scholar 

  • 65. For the explicit relationship between the three sets of partial structure factors commonly used (Faber-Ziman, Ashcroft-Langreth and Bhatia-Thornton) see Y. Waseda, The structure of Non-Crystalline Materials, (McGraw-Hill, New York, 1980)).

    Google Scholar 

  • 66. P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjö, Phys. Rev. B 41, 12197 (1990).

    Google Scholar 

  • 67. H. Iyetomi, P. Vashishta and R.K. Kalia, Phys. Rev. B 43, 1726 (1991).

    Google Scholar 

  • 68. I.T. Penfold, P.S. Salmon, Phys. Rev. Lett. 67, 97 (1991).

    Google Scholar 

  • 69. C. Massobrio, M. Celino and A. Pasquarello, J. Phys. Condens. Matter to be published.

    Google Scholar 

  • 70. C. Massobrio, A. Pasquarello and R. Car, Phys. Rev. B 64, 144205 (2001).

    Google Scholar 

  • 71. M. Celino and C. Massobrio, to be published.

    Google Scholar 

  • 72. M. F. Thorpe, in Insulating and Semiconducting Glasses edited by P. Boolchand (World Scientific, Singapore, 2000), p.95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Hergert M. Däne A. Ernst

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Massobrio, C., Celino, M., Pouillon, Y., Billas, I. 7. From the Cluster to the Liquid: Ab-Initio Calculations on Realistic Systems Based on First-Principles Molecular Dynamics. In: Hergert, W., Däne, M., Ernst, A. (eds) Computational Materials Science. Lecture Notes in Physics, vol 642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39915-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39915-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21051-1

  • Online ISBN: 978-3-540-39915-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics