Skip to main content

Part of the book series: Leitfäden der angewandten Informatik ((XLAI,volume 2))

  • 38 Accesses

Kurzfassung

Inferenzbildung wird als eine zentrale Fähigkeit von Systemen angesehen, die intelligentes Verhalten realisieren. Im allgemeinsten Sinne wird darunter die Fähigkeit verstanden, aus vorhandenem Wissen neues Wissen mittels geeigneter Inferenzregeln zu erschließen.

Inferenzbildung tritt in verschiedensten Formen und Kontexten auf, von der strengen mathematischen Beweisführung bis hin zum ungenauen Schließen auf der Grundlage von vagem Wissen im menschlichen Alltag. Oie Grenzen zwischen verschiedenen solcher Formen sind unklar; begriffliche Verwirrung ist die Folge. Der vorliegende Artikel versucht daher, einen klärenden überblick über das Phänomen des Schließens in seinen verschiedenen Manifestationen unter möglichst einheitlichen Gesichtspunkten zu geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Bibel, W., Automated theorem proving. Vieweg Verlag (1982).

    Google Scholar 

  • Bibel, W., Deduktionsverfahren. Proceedings der Frühjahrsschule Künstliche Intelligenz 1982 (W. Bibel, ed.), Fachberichte Informatik 59, Springer, Berlin, 99–140 (1982a).

    Google Scholar 

  • Bibel, W., Matings in matrices. C.ACM 26, 844–852 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Bibel, W., Inferenzmethoden. Proceedings der Frühjahrsschule Künstliche Intelligenz 1984 (C. Habel, ed.), Fachberichte Informatik, Springer, Berlin, 1–47 (1985).

    Google Scholar 

  • Bibel, W., Knowledge representation from a deductive point of view. Proceedings of the I IFAC Symposium on Artificial Intelligence, Leningrad, USSR, October 1983 (G.S. Pospelov, ed.), Pergamon Press Ltd. (1984a).

    Google Scholar 

  • Bibel, W., First-order reasoning about knowledge and belief. Proceedings of the International Conference on Artificial Intelligence and Robotic Control Systems, Smolenice, CSSR, Juni 1984 (I. Plander, ed.), North-Holland, Amsterdam, 9–16 (1984b).

    Google Scholar 

  • Bibel, W., Jorrand, Ph., Fundamentals in Artificial Intelligence. Advanced Course on Artificial Intelligence, Vignieu, July 1985, Lecture Notes in Computer Science, Springer, Berlin (1986).

    Google Scholar 

  • Biermann, A.W., Fundamental mechanisms in machine learning and inductive inference. In (Bibel, Jorrand 86).

    Google Scholar 

  • Biermann, A., Guiho, G., und Kodratoff, Y., Automatic program construction techniques. MacMillan, New York (1984).

    MATH  Google Scholar 

  • Bowen, K., and Kowalski, R., Amalgamating language and metalanguage in logic programming. In: Logic programming ( K.L. Clark et al., eds.), Academic Press, London (1982).

    Google Scholar 

  • Brown, J.S., und de Kleer, J., The origin, form, and logic of qualitative physical laws. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 1158–1169 (1983).

    Google Scholar 

  • Bundy, A., The computer modelling of mathematical reasoning. Academic Press (1983).

    Google Scholar 

  • Clark, K., Negation as failure. In: Logic and data bases (H. Gallaire et al., eds.), Plenum Press, New York, 293–322 (1978).

    Google Scholar 

  • Duda, R., Gaschnig, J., und Hart, P.E., Model design in the PROSPECTOR consultant system for mineral exploration. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 153–167 (1979).

    Google Scholar 

  • Hughes, G.E., und Cresswell, M.J., An introduction to modal logic. Methuen, London (1968).

    MATH  Google Scholar 

  • Kowalski, R., Logic for problem solving. North-Holland, New York (1979).

    MATH  Google Scholar 

  • Lewis, C.I., A survey of symbolic logic. Univ. of California, Berkeley (1918).

    Google Scholar 

  • Loveland, D.W., Automated theorem proving. North-Holland (1978).

    Google Scholar 

  • McCarthy, J., First-order theories of individual concepts and propositions. In: Expert systems in the micro-electronic age (D. Michie, ed.), Edinburgh Univ. Press, 271–287 (1979).

    Google Scholar 

  • McCarthy, J., Circumscription–a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Michalski, R.S., Carbonell, J.G., und Mitchell, T.M., Machine learning. Tioga, Palo Alto (1983).

    Book  Google Scholar 

  • Moore, R.C., Reasoning about knowledge and action. IJCAI-77, Kaufmann, Los Altos, 223–227 (1977).

    Google Scholar 

  • Moore, R.C., Semantical considerations on non-monotonic logic. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 272–279 (1983).

    Google Scholar 

  • Nilsson, N.J., Principles of artificial intelligence. Tioga, Palo Alto (1980).

    MATH  Google Scholar 

  • Perlis, D., Languages with self-reference. Artificial Intelligence 25, 301–322 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Prade, H., A synthetic view of approximate reasoning techniques. IJCAI-83 (A. Bundy, ed.), Kaufmann, Los Altos, 130–136 (1983).

    Google Scholar 

  • Quinlan, J.R., Internal consistency in plausible reasoning systems. New Generation Computing 3, 157–180 (1985).

    Article  Google Scholar 

  • Reiter, R., On closed world data bases. In: Logic and data bases ( H. Gallaire und J. Minker, eds.), Plenum Press, New York (1978).

    Google Scholar 

  • Reiter, R., Towards a logical reconstruction of relational database theory. In: On conceptual modelling: perspectives from artificial intelligence, databases and programming languages (M. Brodie et al., eds.), Springer, Berlin, 191–238 (1984).

    Chapter  Google Scholar 

  • Robinson, J.A., A machine oriented logic based on the resolution principle. J.ACM 12, 23–41 (1965).

    Article  MATH  Google Scholar 

  • Weyrauch, R.W., Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence 13, 133–170 (1980).

    Article  MathSciNet  Google Scholar 

  • Zadeh, L.A., A theory of approximate reasoning. In: Machine Intelligence 9 (J. E. Hayes et al., eds.), Wiley, New York, 149–194, (1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Bibel, W. (1986). Automatische Inferenz. In: Artificial Intelligence — Eine Einführung. Leitfäden der angewandten Informatik, vol 2. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-93997-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-93997-5_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-12473-3

  • Online ISBN: 978-3-322-93997-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics