Skip to main content

Neuroanatomical Signatures of Acute and Chronic Orofacial Pain

  • Chapter
Book cover Contemporary Management of Temporomandibular Disorders
  • 784 Accesses

Abstract

The more fully we understand chronic pain, the more adept we as providers will be able to deliver effective care to the patient with TMD. There have been significant advances in our current understanding of the neuroanatomical and neurochemical elements that underlie chronic pain, but the picture of how it is established and maintained is by no means complete. This chapter presents a short synopsis of our current appreciation of pain in general as well as a discussion of the research that contributes to the basis of our contemporary knowledge and theories that help us understand TMD-associated chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. London: Macmillan; 1937.

    Google Scholar 

  2. Penfield W. Engrams in the human brain: mechanisms of memory. Proc Roy Soc Med. 1968;61:831–40.

    Google Scholar 

  3. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Brown L; 1954.

    Google Scholar 

  4. Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30:263–88.

    Google Scholar 

  5. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368:1388–97.

    Google Scholar 

  6. Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A. 1999;96:7705–9.

    Google Scholar 

  7. Denk F, McMahon SB, Tracey I. Pain vulnerability: a neurobiological perspective. Nat Neurosci. 2014;17:192–200.

    Google Scholar 

  8. Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol. 2013;109:5–12.

    Google Scholar 

  9. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–91.

    Google Scholar 

  10. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 2015;38:86–95.

    Google Scholar 

  11. Haggard P, de Boer L. Oral somatosensory awareness. Neurosci Biobehav Rev. 2014;47:469–84.

    Google Scholar 

  12. Scholz J, Woolf CJ. Can we conquer pain? Nat Neurosci. 2002;5:1062–7.

    Google Scholar 

  13. Minde J, Svensson O, Holmberg M, Solders G, Toolanen G. Orthopedic aspects of familial insensitivity to pain due to a novel nerve growth factor beta mutation. Acta Orthop. 2006;77:198–202.

    Google Scholar 

  14. Losa M, Scheier H, Rohner P, Sailer H, Hayek J, Giedion A, Boltshauser E. Langzeitverlauf bei kongenitaler Analgesie. Schweiz Med Wochenschr. 1989;119:1303–8.

    Google Scholar 

  15. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.

    Google Scholar 

  16. Brown RS, Arm RN, Epstein JB. Diagnosis and treatment of chronic orofacial pain, 2nd edn. In: Clinician’s guide. Hamilton, ON: BC Decker; 2008.

    Google Scholar 

  17. Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.

    Google Scholar 

  18. Vachon-Presseau E, Tetreault P, Petre B, Huang L, Berger SE, Torbey S, Baria AT, Mansour AR, Hashmi JA, Griffith JW, Comasco E, Schnitzer TJ, Baliki MN, Apkarian AV. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain. 2016;139:1958–70.

    Google Scholar 

  19. Treede R-D, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain—redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5.

    Google Scholar 

  20. Craig ADB. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Google Scholar 

  21. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol. 2011;93:111–24.

    Google Scholar 

  22. van Ryckeghem DML, Crombez G, Eccleston C, Legrain V, van Damme S. Keeping pain out of your mind: the role of attentional set in pain. Eur J Pain. 2013;17:402–11.

    Google Scholar 

  23. Kucyi A, Davis KD. The neural code for pain: from single-cell electrophysiology to the dynamic pain connectome. Neuroscientist. 2017;23(4):397–414.

    Google Scholar 

  24. Davis KD, Kucyi A, Moayedi M. The pain switch: an “ouch” detector. Pain. 2015;156:2164–6.

    Google Scholar 

  25. Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM, Schnitzer TJ, Apkarian AV. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol. 2014;111:1065–76.

    Google Scholar 

  26. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62:2545–55.

    Google Scholar 

  27. Baliki MN, Baria AT, Apkarian AV. The cortical rhythms of chronic back pain. J Neurosci. 2011;31:13981–90.

    Google Scholar 

  28. Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34:3969–75.

    Google Scholar 

  29. Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2013;34:2154–77.

    Google Scholar 

  30. Farmer MA, Baliki MN, Apkarian AV. A dynamic network perspective of chronic pain. Neurosci Lett. 2012;520:197–203.

    Google Scholar 

  31. Brügger M, Ettlin DA, Meier M, Keller T, Luechinger R, Barlow A, Palla S, Jäncke L, Lutz K. Taking sides with pain—lateralization aspects related to cerebral processing of dental pain. Front Human Neurosci. 2011;5:12.

    Google Scholar 

  32. Lin C-S. Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One. 2014;9:e94300.

    Google Scholar 

  33. Ettlin DA, Zhang H, Lutz K, Järmann T, Meier D, Gallo LM, Jäncke L, Palla S. Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI). J Dent Res. 2004;83(10):757–61.

    Google Scholar 

  34. Jantsch HHF, Kemppainen P, Ringler R, Handwerker HO, Forster C. Cortical representation of experimental tooth pain in humans. Pain. 2005;118:390–9.

    Google Scholar 

  35. Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex. 2006;16:669–75.

    Google Scholar 

  36. Kubo K, Shibukawa Y, Shintani M, Suzuki T, Ichinohe T, Kaneko Y. Cortical representation area of human dental pulp. J Dent Res. 2008;87:358–62.

    Google Scholar 

  37. Brügger M, Ettlin DA, Keller T, Luechinger R, Jäncke L, Palla S, Barlow A, Gallo LM, Lutz K. Interindividual differences in the perception of dental stimulation and related brain activity. Eur J Oral Sci. 2009;117:27–33.

    Google Scholar 

  38. Trulsson M, Francis ST, Bowtell R, McGlone F. Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J Neurophysiol. 2010;104:2257–65.

    Google Scholar 

  39. Weigelt A, Terekhin P, Kemppainen P, Dörfler A, Forster C. The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway. Pain. 2010;149:529–38.

    Google Scholar 

  40. Gutzeit A, Meier D, Meier ML, von Weymarn C, Ettlin DA, Graf N, Froehlich JM, Binkert CA, Brügger M. Insula-specific responses induced by dental pain. A proton magnetic resonance spectroscopy study. Eur Radiol. 2011;21:807–15.

    Google Scholar 

  41. Brügger M, Lutz K, Brönnimann B, Meier ML, Luechinger R, Barlow A, Jäncke L, Ettlin DA. Tracing toothache intensity in the brain. J Dent Res. 2012;91:156–60.

    Google Scholar 

  42. Meier ML, Brügger M, Ettlin DA, Luechinger R, Barlow A, Jäncke L, Lutz K. Brain activation induced by dentine hypersensitivity pain—an fMRI study. J Clin Periodontol. 2012;39:441–7.

    Google Scholar 

  43. Gutzeit A, Meier D, Froehlich JM, Hergan K, Kos S, V Weymarn C, Lutz K, Ettlin D, Binkert CA, Mutschler J, Sartoretti-Schefer S, Brügger M. Differential NMR spectroscopy reactions of anterior/posterior and right/left insular subdivisions due to acute dental pain. Eur Radiol. 2013;23:450–60.

    Google Scholar 

  44. Meier ML, Widmayer S, Abazi J, Brügger M, Lukic N, Lüchinger R, Ettlin DA. The human brain response to dental pain relief. J Dent Res. 2015;94(5):690–6.

    Google Scholar 

  45. de Matos NMP, Hock A, Wyss M, Ettlin DA, Brügger M. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex. Neuroimage. 2017;162:162–72.

    Google Scholar 

  46. Baas D, Aleman A, Kahn RS. Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev. 2004;45:96–103.

    Google Scholar 

  47. Neugebauer V, Li W. Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol. 2003;89:716–27.

    Google Scholar 

  48. Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist. 2004;10:221–34.

    Google Scholar 

  49. Meier ML, de Matos NMP, Brügger M, Ettlin DA, Lukic N, Cheetham M, Jäncke L, Lutz K. Equal pain-unequal fear response: enhanced susceptibility of tooth pain to fear conditioning. Front Hum Neurosci. 2014;8:526.

    Google Scholar 

  50. Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K. Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. Magma. 2012;25:177–82.

    Google Scholar 

  51. Boubela RN, Kalcher K, Huf W, Seidel E-M, Derntl B, Pezawas L, Našel C, Moser E. fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep. 2015;5:10499.

    Google Scholar 

  52. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.

    Google Scholar 

  53. Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. 4th ed. Berlin: Springer; 2008.

    Google Scholar 

  54. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010;214:519–34.

    Google Scholar 

  55. Baliki MN, Geha PY, Apkarian AV. Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101:875–87.

    Google Scholar 

  56. Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain. 2012;135:631–40.

    Google Scholar 

  57. Pomares FB, Faillenot I, Barral FG, Peyron R. The ‘where’ and the ‘when’ of the BOLD response to pain in the insular cortex. Discussion on amplitudes and latencies. NeuroImage. 2013;64:466–75.

    Google Scholar 

  58. Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage. 2011;54:2237–49.

    Google Scholar 

  59. Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol. 2011;97:179–206.

    Google Scholar 

  60. Craig ADB. The sentient self. Brain Struct Funct. 2010;214:563–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bruegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Bruegger, M. (2019). Neuroanatomical Signatures of Acute and Chronic Orofacial Pain. In: Connelly, S.T., Tartaglia, G.M., Silva, R.G. (eds) Contemporary Management of Temporomandibular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-99915-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99915-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99914-2

  • Online ISBN: 978-3-319-99915-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics