Skip to main content

Significance of Bound Water Measurement

  • Chapter
  • First Online:
State of Bound Water: Measurement and Significance in Food Processing

Abstract

Water can be classified differently on the basis of their surrounding environment and bonding attributes. Both free and bound water contributes in the changes during their removal from food materials. Different amount of energy and time is required to remove specific type of water. For example, bound water needs more energy and time in order to migrate from food materials. Similarly, higher cost and quality changes are associated with the removal of bound water at different food processing. However, a critical moisture content should be precisely maintained for prolonged shelf life as well as to keep maintaining expected texture, softness, crispness of foods during dehydration. In this chapter, the significance of the bound water removal from food has been critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Blanch, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio, The relationship between bound water and carbohydrate reserves in association with cellular integrity in Fragaria vesca stored under different conditions. Food Bioprocess Technol. 8(4), 875–884 (2015)

    Article  CAS  Google Scholar 

  2. O. Goñi, C. Fernandez-Caballero, M.T. Sanchez-Ballesta, M.I. Escribano, C. Merodio, Water status and quality improvement in high-CO2 treated table grapes. Food Chem. 128(1), 34–39 (2011)

    Article  PubMed  Google Scholar 

  3. J.C. Ho, S.K. Chou, K.J. Chua, A.S. Mujumdar, M.N.A. Hawlader, Analytical study of cyclic temperature drying: effect on drying kinetics and product quality. J. Food Eng. 51(1), 65–75 (2002)

    Article  Google Scholar 

  4. E.J. Quirijns, Modelling and Dynamic Optimisation of Quality Indicator Profiles During Drying (Wageningen University and Research, Wageningen, 2006)

    Google Scholar 

  5. S.J. Kowalski, A. Pawłowski, Energy consumption and quality aspect by intermittent drying. Chem. Eng. Process. Process Intensif. 50(4), 384–390 (2011)

    Article  CAS  Google Scholar 

  6. N.R. Nwakuba, S.N. Asoegwu, K.N. Nwaigwe, Energy requirements for drying of sliced agricultural products: a review. Agric. Eng. Int. CIGR J. 18(2), 144–155 (2016)

    Google Scholar 

  7. G.S.V. Raghavan, T.J. Rennie, P.S. Sunjka, V. Orsat, W. Phaphuangwittayakul, P. Terdtoon, Overview of new techniques for drying biological materials with emphasis on energy aspects. Braz. J. Chem. Eng. 22(2), 195–201 (2005)

    Article  CAS  Google Scholar 

  8. M.A. Billiris, T.J. Siebenmorgen, A. Mauromoustakos, Estimating the theoretical energy required to dry rice. J. Food Eng. 107(2), 253–261 (2011)

    Article  Google Scholar 

  9. S. Gunasekaran, T.L. Thompson, Optimal energy management in grain drying. Crit. Rev. Food Sci. Nutr. 25(1), 1–48 (1986)

    Article  CAS  PubMed  Google Scholar 

  10. W. Weisis, J. Buchinger, Solar drying: establishment of a production, sales and consulting infrastructure for solar thermal plants in Zimbabwe, in Arbeitsgemeinschaft Erneuerbare Energie, Institute for Sustainable Technologies, Austria (2003)

    Google Scholar 

  11. A.S. Mujumdar, A.S. Menon, Drying of solids: principles, classification, and selection of dryers. Handb. Ind. Dry. 1, 1–39 (1995)

    Google Scholar 

  12. N.S. Sonia, C. Mini, P.R. Geethalekshmi, Spray drying–an innovation in fruit and vegetable dehydration–a review. J. Agric. Eng. Food Technol. 2(2), 75–79 (2015)

    Google Scholar 

  13. S.J. Kowalski, A. Pawłowski, Modeling of kinetics in stationary and intermittent drying. Dry. Technol. 28(8), 1023–1031 (2010)

    Article  Google Scholar 

  14. A. Motevali, S. Minaei, A. Banakar, B. Ghobadian, H. Darvishi, Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. J. Saudi Soc. Agric. Sci. 15(2), 179–187 (2016)

    Google Scholar 

  15. M.U.H. Joardder, R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)

    Article  Google Scholar 

  16. M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, Effects of drying and grinding in production of fruit and vegetable powders: a review. J. Food Eng. 188, 32–49 (2016)

    Article  Google Scholar 

  17. G.P. Sharma, S. Prasad, Specific energy consumption in microwave drying of garlic cloves. Energy 31(12), 1921–1926 (2006)

    Article  CAS  Google Scholar 

  18. M. Aghbashlo, M.H. kianmehr, H. Samimi-Akhijahani, Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers. Manag. 49(10), 2865–2871 (2008)

    Article  CAS  Google Scholar 

  19. A. Motevali, S. Minaei, M.H. Khoshtaghaza, H. Amirnejat, Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 36(11), 6433–6441 (2011)

    Article  Google Scholar 

  20. A. Andrés, C. Bilbao, P. Fito, Drying kinetics of apple cylinders under combined hot air–microwave dehydration. J. Food Eng. 63(1), 71–78 (2004)

    Article  Google Scholar 

  21. J. Ahmed, N. Sinha, Y. Hui, Drying of vegetables: principles and dryer design, in Handbook of Vegetables & Vegetable Processing (Wiley-Blackwell, Ames, 2011), pp. 279–298

    Chapter  Google Scholar 

  22. M.R. Okos, Food dehydration, in Hand Book of Food Engineering (1992)

    Google Scholar 

  23. M. Beedie, Energy saving-a question of quality?, in Dairy Industries International (United Kingdom) (1995)

    Google Scholar 

  24. S. Cenkowski, D.S. Jayas, D. Hao, Latent heat of vaporization for selected foods and crops. Can. Agric. Eng. 34(3), 281–286 (1992)

    Google Scholar 

  25. T. Kudra, Energy aspects in drying. Dry. Technol. 22(5), 917–932 (2004)

    Article  Google Scholar 

  26. K.J. Chua, A.S. Mujumdar, M.N.A. Hawlader, S.K. Chou, J.C. Ho, Convective drying of agricultural products. Effect of continuous and stepwise change in drying air temperature. Dry. Technol. 19(8), 1949–1960 (2001)

    Article  Google Scholar 

  27. M.L. Khanna, N.M. Singh, Industrial solar drying. Sol. Energy 11(2), 87–89 (1967)

    Article  Google Scholar 

  28. J.S.M. Botterill, Fluid-Bed Heat Transfer (Academic, London, 1975)

    Google Scholar 

  29. I. Guler, M.F. Guillén, J.M. Macpherson, Global competition, institutions, and the diffusion of organizational practices: the international spread of ISO 9000 quality certificates. Adm. Sci. Q. 47(2), 207–232 (2002)

    Article  Google Scholar 

  30. A.Z. Sahin, I. Dincer, B.S. Yilbas, M.M. Hussain, Determination of drying times for regular multi-dimensional objects. Int. J. Heat Mass Transf. 45(8), 1757–1766 (2002)

    Article  Google Scholar 

  31. J. Sheehan, The Enlightenment Bible: Translation, Scholarship, Culture, vol 197 (Princeton University Press, Princeton, 2005)

    Google Scholar 

  32. A. Migliori, J.D. Maynard, Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev. Sci. Instrum. 76(12), 121301 (2005)

    Article  Google Scholar 

  33. R.B. Keey, Introduction to Industrial Drying Operations (Pergamon Press, Oxford, 1978)

    Google Scholar 

  34. G.P. Holmes et al., Chronic fatigue syndrome: a working case definition. Ann. Intern. Med. 108(3), 387–389 (1988)

    Article  CAS  PubMed  Google Scholar 

  35. S.R.S. Dev, V.G.S. Raghavan, Advancements in drying techniques for food, fiber, and fuel. Dry. Technol. 30(11–12), 1147–1159 (2012)

    Article  Google Scholar 

  36. F. Kong, R.P. Singh, Chemical deterioration and physical instability of foods and beverages, in The Stability and Shelf Life of Food, 2nd edn. (Elsevier, New York, 2016), pp. 43–76

    Chapter  Google Scholar 

  37. S.H. Anwar, B. Kunz, The influence of drying methods on the stabilization of fish oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 105(2), 367–378 (2011)

    Article  CAS  Google Scholar 

  38. M.A.M. Khraisheh, Y.S. Al-Degs, W.A.M. Mcminn, Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 99(2), 177–184 (2004)

    Article  CAS  Google Scholar 

  39. C. Sealy, Water on the Nanoscale: Carbon Nanotubes (Elsevier, New York, 2004)

    Book  Google Scholar 

  40. J. Blahovec, Role of water content in food and product texture. Int. Agrophysics 21(3), 209 (2007)

    CAS  Google Scholar 

  41. G. Roudaut, C. Dacremont, B.V. Pàmies, B. Colas, M. Le Meste, Crispness: a critical review on sensory and material science approaches. Trends Food Sci. Technol. 13(6–7), 217–227 (2002)

    Article  CAS  Google Scholar 

  42. A.J. Fontana Jr., S.J. Schmidt, T.P. Labuza, Water Activity in Foods: Fundamentals and Applications, vol 13 (Wiley, Hoboken, 2008)

    Google Scholar 

  43. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Porosity: Establishing the Relationship between Drying Parameters and Dried Food Quality (Springer, Berlin, 2015)

    Google Scholar 

  44. L.P. Ramos, The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6), 863–871 (2003)

    Article  CAS  Google Scholar 

  45. R. Ilker, A.S. Szczesniak, Structural and chemical bases for texture of plant foodstuffs. J. Texture Stud. 21(1), 1–36 (1990)

    Article  CAS  Google Scholar 

  46. R.M. Reeve, Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1(3), 247–284 (1970)

    Article  CAS  PubMed  Google Scholar 

  47. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 117, 266–273 (2017)

    Article  Google Scholar 

  48. M.A.M. Khraisheh, W.A.M. McMinn, T.R.A. Magee, Quality and structural changes in starchy foods during microwave and convective drying. Food Res. Int. 37(5), 497–503 (2004)

    Article  CAS  Google Scholar 

  49. M.S. Uddin, M.N.A. Hawlader, L. Ding, A.S. Mujumdar, Degradation of ascorbic acid in dried guava during storage. J. Food Eng. 51(1), 21–26 (2002)

    Article  Google Scholar 

  50. R.K. Singh, D.B. Lund, Kinetics of ascorbic acid degradation in stored intermediate moisture apples, in Proceedings of the 3rd International Congress on Engineering and Food. Engineering Sciences in the Food Industry, vol. 1 (1984)

    Google Scholar 

  51. M.C. Vieira, A.A. Teixeira, C.L.M. Silva, Kinetic parameters estimation for ascorbic acid degradation in fruit nectar using the partial equivalent isothermal exposures (PEIE) method under non-isothermal continuous heating conditions. Biotechnol. Prog. 17(1), 175–181 (2001)

    Article  CAS  PubMed  Google Scholar 

  52. K.J. Chua, S.K. Chou, J.C. Ho, A.S. Mujumdar, M.N.A. Hawlader, Cyclic air temperature drying of guava pieces: effects on moisture and ascorbic acid contents. Food Bioprod. Process. 78(2), 72–78 (2000)

    Article  CAS  Google Scholar 

  53. A.M. Goula, K.G. Adamopoulos, Retention of ascorbic acid during drying of tomato halves and tomato pulp. Dry. Technol. 24(1), 57–64 (2006)

    Article  CAS  Google Scholar 

  54. V. Gekas, Characterisation and properties of foods, in Transport Phenomena of Foods and Biological Materials (CRC Press, Boca Raton, 1992), pp. 70–71

  55. P.M. Bluestein, T.P. Labuza, Effects of moisture removal on nutrients, in Nutritional Evaluation of Food Processing (Springer, Berlin, 1988), pp. 393–422

    Chapter  Google Scholar 

  56. J.F. Nicoleti, V. Silveira Jr., J. Telis-Romero, V.R.N. Telis, Influence of drying conditions on ascorbic acid during convective drying of whole persimmons. Dry. Technol. 25(5), 891–899 (2007)

    Article  CAS  Google Scholar 

  57. M. Mishkin, I. Saguy, M. Karel, Optimization of nutrient retention during processing: ascorbic acid in potato dehydration. J. Food Sci. 49(5), 1262–1266 (1984)

    Article  CAS  Google Scholar 

  58. W.A.M. McMinn, T.R.A. Magee, Kinetics of ascorbic acid degradation and non-enzymic browning in potatoes. Food Bioprod. Process. 75(4), 223–231 (1997)

    Article  CAS  Google Scholar 

  59. M. Loncin, J.J. Bimbenet, J. Lenges, Influence of the activity of water on the spoilage of foodstuffs. Int. J. Food Sci. Technol. 3(2), 131–142 (1968)

    Article  Google Scholar 

  60. K. Eichner, M. Karel, Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. J. Agric. Food Chem. 20(2), 218–223 (1972)

    Article  CAS  Google Scholar 

  61. T.P. Labuza, The effect of water activity on reaction kinetics of food deterioration. Food Technol. 34(4), 36–41 (1980)

    CAS  Google Scholar 

  62. H.C. Warmbier, R.A. Schnickels, T.P. Labuza, Nonenzymatic browning kinetics in an intermediate moisture model system: effect of glucose to lysine ratio. J. Food Sci. 41(5), 981–983 (1976)

    Article  CAS  Google Scholar 

  63. M. Karel, S. Anglea, P. Buera, R. Karmas, G. Levi, Y. Roos, Stability-related transitions of amorphous foods. Thermochim. Acta 246(2), 249–269 (1994)

    Article  CAS  Google Scholar 

  64. H.C. Warmbier, R.A. Schnlckels, T.P. Labuza, Effect of glycerol on nonenzymatic browning in a solid intermediate moisture model food system. J. Food Sci. 41(3), 528–531 (1976)

    Article  CAS  Google Scholar 

  65. D. Laroque, C. Inisan, C. Berger, É. Vouland, L. Dufossé, F. Guérard, Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 111(4), 1032–1042 (2008)

    Article  CAS  Google Scholar 

  66. M.G.L. Hertog, E.J.M. Feskens, D. Kromhout, P.C.H. Hollman, M.B. Katan, Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342(8878), 1007–1011 (1993)

    Article  CAS  PubMed  Google Scholar 

  67. J. Sun, Y.-F. Chu, X. Wu, R.H. Liu, Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 50(25), 7449–7454 (2002)

    Article  CAS  PubMed  Google Scholar 

  68. V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002)

    Article  CAS  PubMed  Google Scholar 

  69. N. Boudhrioua, N. Bahloul, I. Ben Slimen, N. Kechaou, Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind. Crop. Prod. 29(2–3), 412–419 (2009)

    Article  CAS  Google Scholar 

  70. G. Xu, X. Ye, J. Chen, D. Liu, Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 55(2), 330–335 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. K. Hayat et al., Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 123(2), 423–429 (2010)

    Article  CAS  Google Scholar 

  72. T.P. Labuza, L.R. Dugan Jr., Kinetics of lipid oxidation in foods. Crit. Rev. Food Sci. Nutr. 2(3), 355–405 (1971)

    Google Scholar 

  73. M. Karel, S.R. Tannenbaum, D.H. Wallace, H. Maloney, Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. J. Food Sci. 31(6), 892–896 (1966)

    Article  CAS  Google Scholar 

  74. D.G. Quast, M. Karel, Effects of environmental factors on the oxidation of potato chips. J. Food Sci. 37(4), 584–588 (1972)

    Article  CAS  Google Scholar 

  75. J.L. Caivano, Appearance [Cesia]: construction of scales by means of spinning disks. Color. Res. Appl. 19(5), 351–362 (1994)

    Article  Google Scholar 

  76. J.L. Caivano, Cesia: a system of visual signs complementing color. Color. Res. Appl. 16(4), 258–268 (1991)

    Article  Google Scholar 

  77. J.L. Caivano, Cesia: its relation to color in terms of the trichromatic theory. Farbe 42(1), 51–64 (1996)

    Google Scholar 

  78. J.L. Caivano, I. Menghi, N. Iadisernia, Cesia and paints: an atlas of cesia with painted samples, in Proceedings of the Interim Meeting of the International Color Association AIC (2004), pp. 113–116

    Google Scholar 

  79. M.S. Rahman, Food stability determination by macro – micro region concept in the state diagram and by defining a critical temperature. J. Food Eng. 99(4), 402–416 (2010)

    Article  Google Scholar 

  80. H.T. Jokiniemi, J.M. Ahokas, Drying process optimisation in a mixed-flow batch grain dryer. Biosyst. Eng. 121, 209–220 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joardder, M.U.H., Mourshed, M., Hasan Masud, M. (2019). Significance of Bound Water Measurement. In: State of Bound Water: Measurement and Significance in Food Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-99888-6_7

Download citation

Publish with us

Policies and ethics