Skip to main content

History and Principles of Ocular Ultrasonography

  • Chapter
  • First Online:

Abstract

Acoustics, the science of sound, started in the 6th century BC. Ultrasound physics was discovered by Lazzaro Spallanzani in 1794 when he explained echolocation in bats, used for hunting and navigating by inaudible sound. Jacques and Pierre Curie, in 1880, discovered the piezoelectric effect, which was later used in transducers to generate and detect ultrasonic waves in air and water. In 1917, the first technological application of ultrasound was introduced by Paul Langevin to detect submarines and icebergs during the First World War.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thijssen JM. The history of ultrasound techniques in ophthalmology. Ultrasound Med Biol. 1993;19:599–618.

    Article  CAS  PubMed  Google Scholar 

  2. Mundt G, Hughes W. Ultrasonics in ocular diagnosis. Am J Ophthalmol. 1956;41:488–98.

    Article  PubMed  Google Scholar 

  3. Oksala A, Lehtinen A. Diagnostic value of ultrasonics in ophthalmology. Ophthalmologica. 1957;134:387–95.

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto Y, Namiki R, Baba M, Kato M. A study of the measurement of ocular axial length by ultrasound echography. Acta Soc Ophthalmol Jpn. 1960;64:1333–41.

    Google Scholar 

  5. Araki M. Studies on reflective elements of the human eye by ultrasonic waves: accuracy of the measurement of ocular axial length by ultrasonic echography. J Clin Pathol. 1961;15:111–9.

    CAS  Google Scholar 

  6. Jansson F. Measurement of intraocular distances by ultrasound and comparison between optical and ultrasonic determination of the depth of the anterior chamber. Acta Ophthalmol. 1963;41:25–61.

    Article  CAS  Google Scholar 

  7. Weinstein GW, Baum G, Binkhorst R, Troutman R. A comparison of ultrasonographic and optical methods for determining the axial length of the aphakic eye. Am J Ophthalmol. 1966;62:1194–201.

    Article  CAS  PubMed  Google Scholar 

  8. Lizzi FL, Coleman DJ. History of ophthalmic ultrasound. J Ultrasound Med. 2004;23:1255–66.

    Article  PubMed  Google Scholar 

  9. Penner R, Passmore JW. Magnetic vs nonmagnetic intraocular foreign bodies: an ultrasonic determination. Arch Ophthalmol. 1966;76:676–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cowden JW, Runyan TE. Localization of intraocular foreign bodies: further experiences in ultrasonic vs radiologic methods. Arch Ophthalmol. 1969;82:299–301.

    Article  CAS  PubMed  Google Scholar 

  11. Ossoinig K. Clinical echo-ophthalmology. In: Blodi FC, editor. Current concepts in ophthalmology, vol. III. St Louis: CV Mosby Co; 1972. p. 101–30.

    Google Scholar 

  12. Baum G, Greenwood I. The application of ultrasonic locating techniques to ophthalmology, part I: reflective properties. Am J Ophthalmol. 1958;46:319–29.

    Article  CAS  PubMed  Google Scholar 

  13. Purnell EW. Ultrasound in ophthalmological diagnosis. In: Grossman C, Homes JH, Joyner C, Purnell EW, editors. Diagnostic ultrasound. New York: Plenum Press; 1966. p. 95–109.

    Google Scholar 

  14. Holasek E, Sokollu A. Direct contact, hand-held, diagnostic B-scanner. In: Proceedings of the IEEE Ultrasonic Symposium. Piscataway: Institute of Electrical and Electronics Engineers; 1972. p. 38–43.

    Google Scholar 

  15. Coleman DJ, Konig WF, Katz L. A hand-operated, ultrasound scan system for ophthalmic evaluation. Am J Ophthalmol. 1969;68:256–63.

    Article  CAS  PubMed  Google Scholar 

  16. McLeod D, Restori M. Ultrasound examination in severe diabetic eye disease. Br J Ophthalmol. 1979;63:533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bronson NR. Development of a simple B-scan ultrasonoscope. Trans Am Ophthalmol Soc. 1972;70:365–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Thijssen JM, Byers AL, Cloostermans MJ. Computers assisted echography: statistical analysis of A-mode video echograms obtained by tissue sampling. Med Biol Eng Comput. 1981;9:437–42.

    Article  Google Scholar 

  19. Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50.

    Article  CAS  PubMed  Google Scholar 

  20. Coleman DJ, Silverman RH, Rondeau MJ, Lizzi FL. New perspectives: 3-D volume rendering of ocular tumors. Acta Ophthalmol Suppl. 1992;204:22.

    Google Scholar 

  21. Fisher Y, Hanutsaha P, Tong S, Fenster A, Mazarin G, Mandava N. Three-dimensional ophthalmic contact B-scan ultrasonography of the posterior segment. Retina. 1998;18:251–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lieb WE. Color Doppler imaging of the eye and orbit. Radiol Clin N Am. 1998;36:1059–71.

    Article  CAS  PubMed  Google Scholar 

  23. Lizzi FL, Astor M, Liu T, Deng C, Coleman DJ, Silverman RH. Ultrasonic spectrum analysis for tissue assays and therapy evaluation. Int J Imaging Syst Technol. 1997;8:3–10.

    Article  Google Scholar 

  24. Ferrara KW, Ostromogilsky M, Rosenberg S, Sokil-Melgar J. Parameter mapping for the detection of disturbed blood flow. Ultrasound Med Biol. 1995;21:517–25.

    Article  CAS  PubMed  Google Scholar 

  25. Silverman RH, Kruse DE, Coleman DJ, Ferrara KW. High-resolution ultrasonic imaging of blood flow in the anterior segment of the eye. Invest Ophthalmol Vis Sci. 1999;40:1373–81.

    CAS  PubMed  Google Scholar 

  26. Lizzi FL, Coleman DG, Driller J, Ostromogilsky M. Thermal model of ultrasound treatment of glaucoma. Ultrasound Med Biol. 1984;7:245–52.

    Article  Google Scholar 

  27. Lizzi FL, Ostromogilsky M. Analytical modeling of ultrasonically induced tissue heating. Ultrasound Med Biol. 1987;13:607–18.

    Article  CAS  PubMed  Google Scholar 

  28. Lizzi FL, Driller J, Lunzer B, Kalisz A, Coleman DJ. Computer model of ultrasonic hyperthermia and ablation for ocular tumors using B-scan data. Ultrasound Med Biol. 1992;13:59–73.

    Article  Google Scholar 

  29. De Gregorio A, Pedrotti E, Stevan G, Montali M, Morselli S. Safety and efficacy of multiple cyclocoagulation of ciliary bodies by high-intensity focused ultrasound in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2017;255:2429–35.

    Article  PubMed  Google Scholar 

  30. Panda PK. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci. 2009;44:5049–62.

    Article  CAS  Google Scholar 

  31. Silverman RH. Focused ultrasound in ophthalmology. Clin Ophthalmol. 2016;10:1865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Dong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, A., Maleki, A., Nguyen, Q.D. (2019). History and Principles of Ocular Ultrasonography. In: Algaeed, A., Kozak, I. (eds) Clinical Atlas of Ophthalmic Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-319-99870-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99870-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99869-5

  • Online ISBN: 978-3-319-99870-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics