Skip to main content

Efficient Traceable Oblivious Transfer and Its Applications

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

Oblivious transfer (OT) has been applied widely in privacy-sensitive systems such as on-line transactions and electronic commerce to protect users’ private information. Traceability is an interesting feature of such systems that the privacy of the dishonest users could be traced by the service provider or a trusted third party (TTP). However, previous research on OT mainly focused on designing protocols with unconditional receiver’s privacy. Thus, traditional OT schemes cannot fulfill the traceability requirements in the aforementioned applications. In this paper, we address this problem by presenting a novel traceable oblivious transfer (TOT) without involvement of any TTP. In the new system, an honest receiver is able to make a fixed number of choices with perfect receiver privacy. If the receiver misbehaves and tries to request more than a pre-fixed number of choices, then all his previous choices could be traced by the sender. We first give the formal definition and security model of TOT, then propose an efficient TOT scheme, which is proven secure under the proposed security model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the traceability means that the previously choices of the cheating receiver are revealed, which is the major distinction between our proposed TOT and the construction in [13]. In the table, we use the symbol traceability\(^*\) to distinguish our work with that one in [13].

  2. 2.

    We assume there exists a public key infrastructure (PKI) issuing certificates on the users’ public keys in our system.

References

  1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8

    Chapter  Google Scholar 

  2. Ashton, K.: That internet of things? Thing (1999)

    Google Scholar 

  3. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing contracts. IEEE Trans. Inf. Theory 36(1), 40–46 (1990)

    Article  MathSciNet  Google Scholar 

  4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  5. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_17

    Chapter  Google Scholar 

  6. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS 2009, Chicago, Illinois, USA, 9–13 November 2009, pp. 131–140 (2009)

    Google Scholar 

  7. Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious transfer with hidden access control policies. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 192–209. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_12

    Chapter  Google Scholar 

  8. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_33

    Chapter  Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: IEEE Symposium on Foundations of Computer Science, p. 136 (2001)

    Google Scholar 

  10. Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_12

    Chapter  Google Scholar 

  11. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_28

    Chapter  Google Scholar 

  12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  13. Han, J., Susilo, W., Mu, Y., Au, M.H., Cao, J.: AAC-OT: accountable oblivious transfer with access control. IEEE Trans. Inf. Forensics Secur. 10(12), 2502–2514 (2015)

    Article  Google Scholar 

  14. Han, J., Susilo, W., Mu, Y., Yan, J.: Efficient oblivious transfers with access control. Comput. Math. Appl. 63(4), 827–837 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kurosawa, K., Nojima, R.: Simple adaptive oblivious transfer without random oracle. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 334–346. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_20

    Chapter  Google Scholar 

  16. Liu, W., Mu, Y., Yang, G.: An efficient privacy-preserving e-coupon system. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16745-9_1

    Chapter  Google Scholar 

  17. Liu, W., Mu, Y., Yang, G., Yu, Y.: Efficient e-coupon systems with strong user privacy. Telecommun. Syst. 64(4), 695–708 (2017)

    Article  Google Scholar 

  18. Ma, X., Xu, L., Zhang, F.: Oblivious transfer with timed-release receiver’s privacy. J. Syst. Softw. 84(3), 460–464 (2011)

    Article  Google Scholar 

  19. Mu, Y., Zhang, J., Varadharajan, V.: m out of n oblivious transfer. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_30

    Chapter  Google Scholar 

  20. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_36

    Chapter  Google Scholar 

  21. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptol. 18(1), 1–35 (2005)

    Article  MathSciNet  Google Scholar 

  22. Rabin, M.O.: How to exchange secrets by oblivious transfer (1981)

    Google Scholar 

  23. Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication. IEICE Trans. 92-A(1), 147–165 (2009)

    Google Scholar 

  24. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5 November 1982, pp. 160–164 (1982)

    Google Scholar 

  25. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29 October 1986, pp. 162–167 (1986)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2017YFB0802000), the National Natural Science Foundation of China (Nos. 61772418, 61402366). Yinghui Zhang is supported by New Star Team of Xi’an University of Posts & Telecommunications (2016-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Zhang, Y., Mu, Y., Yang, G., Tian, Y. (2018). Efficient Traceable Oblivious Transfer and Its Applications. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics