Skip to main content

Evolution Underway in Prokaryotes

  • Chapter
  • First Online:
  • 1016 Accesses

Abstract

Evolution is a phenomenon that escapes immediate attention because changes occur at a very slow pace and are often considered at odds with a religious vision of the world. Using bacteria that replicate so much faster than eukaryotes has permitted to quantify and discern tendencies. Such laboratory evolution implies growth rate, ability to use this or that substrate, but also synthesis and resistance to antibiotics and the ability to interact with eukaryotic hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci U S A 112:11054–11059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adami C (2006) Digital genetics: unravelling the genetic basis of evolution. Nat Rev Genet 7:109–118

    Article  CAS  PubMed  Google Scholar 

  • Aigle B, Schneider D, Morilhat C, Vandewiele D, Dary A, Holl AC, Simonet JM, Decaris B (1996) An amplifiable and deletable locus of Streptomyces ambofaciens RP181110 contains a very large gene homologous to polyketide synthase genes. Microbiology 142(Pt 10):2815–2824

    Article  CAS  PubMed  Google Scholar 

  • Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet JL (2014) Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 41:251–263

    Article  CAS  PubMed  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A et al (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478

    Article  CAS  PubMed  Google Scholar 

  • Audrain B, Farag M, Ryu C, Ghigo J (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Lenski RE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb Symp Quant Biol 74:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the Angiosperms re-revisited. Am J Bot 97:1–8

    Article  Google Scholar 

  • Bellanger X, Payot S, Leblond-Bourget N, Guedon G (2014) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 38:720–760

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  CAS  Google Scholar 

  • Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409

    Article  CAS  PubMed  Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105:7899–7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordes F, Tarquis L, Nicaud J, Marty A (2011) Isolation of a thermostable variant of Lip2 lipase from Yarrowia lipolytica by directed evolution and deeper insight into the denaturation mechanisms involved. J Biotechnol 156:117–124

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, Ho C, Molineux IJ (1997) Exceptional convergent evolution in a virus. Genetics 147:1497–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, Framboisier X, Leblond P, Challis GL, Aigle B (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J Bacteriol 193:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Cajthaml T, Kresinova Z, Svobodova K, Sigler K, Rezanka T (2009) Microbial transformation of synthetic estrogen 17alpha-ethinylestradiol. Environ Pollut 157:3325–3335

    Article  CAS  PubMed  Google Scholar 

  • Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC et al (2017) Recruitment of a lineage-specific virulence regulatory pathway promotes intracellular infection by a plant pathogen experimentally evolved into a legume symbiont. Mol Biol Evol 34:2503–2521

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Rong X, Pinto-Tomas AA, Fernandez-Villalobos M, Murillo-Cruz C, Huang Y (2015) Population genetic analysis of Streptomyces albidoflavus reveals habitat barriers to homologous recombination in the diversification of streptomycetes. Appl Environ Microbiol 81:966–975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guerineau M, Decaris B et al (2006) Evolution of the terminal regions of the streptomyces linear chromosome. Mol Biol Evol 23:2361–2369

    Article  CAS  PubMed  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  CAS  PubMed  Google Scholar 

  • Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichiacoli. Proc Natl Acad Sci U S A 100:1072–1077

    Article  CAS  Google Scholar 

  • Cooper TF, Remold SK, Lenski RE, Schneider D (2008) Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli. PLoS Genet 4:e35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231

    Article  CAS  PubMed  Google Scholar 

  • Crozat E, Winkworth C, Gaffe J, Hallin PF, Riley MA, Lenski RE, Schneider D (2010) Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. Mol Biol Evol 27:2113–2128

    Article  CAS  PubMed  Google Scholar 

  • Cundliffe E, Bate N, Butler A, Fish S, Gandecha A, Merson-Davies L (2001) The tylosin-biosynthetic genes of Streptomyces fradiae. Antonie Van Leeuwenhoek 79:229–234

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, Londres

    Book  Google Scholar 

  • Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac M, Gokhale C, Masson-Boivin C, Capela D (2017) Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. elife 6:e28683

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453

    Article  CAS  PubMed  Google Scholar 

  • Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827

    Article  CAS  PubMed  Google Scholar 

  • Dibrova DV, Galperin MY, Mulkidjanian AY (2014) Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ Microbiol 16:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donia MS, Fischbach MA (2015) Human Microbiota. Small molecules from the human microbiota. Science 349:1254766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eldredge N, Gould S (1973) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper & Co, San Francisco

    Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469

    Article  CAS  PubMed  Google Scholar 

  • Eriksen DT, Hsieh PC, Lynn P, Zhao H (2013) Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb Cell Factories 12:61

    Article  CAS  Google Scholar 

  • Erill I, Campoy S, Mazon G, Barbe J (2006) Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucleic Acids Res 34:66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fajardo A, Martinez-Martin N, Mercadillo M, Galan JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tummler B, Baquero F et al (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3:e1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferenci T (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229

    Article  CAS  PubMed  Google Scholar 

  • Fiegna F, Yu YT, Kadam SV, Velicer GJ (2006) Evolution of an obligate social cheater to a superior cooperator. Nature 441:310–314

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A 105:4601–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol 184:7042–7046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GBD DaHC (2015) Global, regional, and national disability-adjusted life years(DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386:2145–2191

    Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Cameron Thrash J, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leru A, Maillard A, Medigue C, Batut J, Masson-Boivin C et al (2013) Experimental evolution of nodule intracellular infection in legume symbionts. ISME J 7:1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24:1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Hindré T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365

    Article  PubMed  CAS  Google Scholar 

  • Hopwood D, Kieser T (1993) Conjugative plasmids of Streptomyces. In: Clewell D (ed) Bacterial conjugation. Plenum Press, New York, pp 293–311

    Chapter  Google Scholar 

  • Hungria M, Menna P, Delamuta JRM (2015) Bradyrhizobium, the ancestor of all rhizobia: Phylogeny of housekeeping and nitrogen‐fixation genes. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken. https://doi.org/10.1002/9781119053095.ch18

    Chapter  Google Scholar 

  • Ippoliti PJ, Delateur NA, Jones KM, Beuning PJ (2012) Multiple strategies for translesion synthesis in bacteria. Cell 1:799–831

    Article  CAS  Google Scholar 

  • Jenke-Kodama H, Dittmann E (2005) Combinatorial polyketide biosynthesis at higher stage. Mol Syst Biol 1:2005 0025

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenke-Kodama H, Sandmann A, Muller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039

    Article  CAS  PubMed  Google Scholar 

  • Jones CL, Clancy M, Honnold C, Singh S, Snesrud E, Onmus-Leone F, McGann P, Ong AC, Kwak Y, Waterman P et al (2015) Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis 61:145–154

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DL, Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol 44:757–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman DD, Kearney PC (1970) Microbial degradation of s-triazine herbicides. Residue Rev 32:235–265

    CAS  PubMed  Google Scholar 

  • Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC (2012) Experimental evolution. Trends Ecol Evol 27:547–560

    Article  PubMed  Google Scholar 

  • Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381:694–696

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kinashi H (2011) Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot (Tokyo) 64:19–25

    Article  CAS  Google Scholar 

  • Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8:249–256

    Article  CAS  PubMed  Google Scholar 

  • Kirby WM (1944) Extraction of a highly potent penicillin inactivator from penicillin resistant Staphylococci. Science 99:452–453

    Article  CAS  PubMed  Google Scholar 

  • Knopp M, Andersson DI (2015) Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins. Mol Biol Evol 32:3252–3263

    CAS  PubMed  Google Scholar 

  • Kryazhimskiy S, Tkacik G, Plotkin J (2009) The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci U S A 106:18638–18643

    Article  CAS  Google Scholar 

  • Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracin VH (2015) Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol 6:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108:6258–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gac M, Plucain J, Hindre T, Lenski RE, Schneider D (2012) Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 109:9487–9492

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HH, Hsu CC, Lin YL, Chen CW (2011) Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the ‘end first’ model of conjugal transfer. Microbiology 157:2556–2568

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE (1991) Quantifying fitness and gene stability in microorganisms. Biotechnology 15:173–192

    CAS  PubMed  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387

    Article  CAS  PubMed  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind P, Farr A, Rainey P (2015) Experimental evolution reveals hidden diversity in evolutionary pathways. elife 4:e07074

    Article  PubMed Central  Google Scholar 

  • Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97:4361–4368

    Article  PubMed  CAS  Google Scholar 

  • Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald K, Hutchinson J, Gillett W (1964) Properties of heterozygous diploids between strains of Penicillium chrysogenum selected for high penicillin yield. Antonie Van Leeuwenhoek 30:209–224

    Article  CAS  PubMed  Google Scholar 

  • Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C, Timmers T, Poinsot V, Gilbert LB, Heeb P et al (2010) Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 8:e1000280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchetti M, Jauneau A, Capela D, Remigi P, Gris C, Batut J, Masson-Boivin C (2014) Shaping bacterial symbiosis with legumes by experimental evolution. Mol Plant-Microbe Interact 27:956–964

    Article  CAS  PubMed  Google Scholar 

  • Marchetti M, Clerissi C, Yousfi Y, Gris C, Bouchez O, Rocha E, Cruveiller S, Jauneau A, Capela D, Masson-Boivin C (2017) Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime. Mol Ecol 26:1818–1831

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Sachs JL (2017) Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol 44:7–15

    Article  PubMed  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meroueh SO, Minasov G, Lee W, Shoichet BK, Mobashery S (2003) Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J Am Chem Soc 125:9612–9618

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  PubMed  Google Scholar 

  • Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13:632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandza S, Biukovic G, Paravic A, Dadbin A, Cullum J, Hranueli D (1998) Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends. Mol Microbiol 28:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Aigle B, Girardet JM, Mangenot S, Pernodet JL, Decaris B, Leblond P (2004) Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto J, Silva LP, Kruger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324:634–644

    Article  CAS  PubMed  Google Scholar 

  • Perrier A, Peyraud R, Rengel D, Barlet X, Lucasson E, Gouzy J, Peeters N, Genin S, Guidot A (2016) Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum. PLoS Pathog 12:e1006044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plucain J, Hindre T, Le Gac M, Tenaillon O, Cruveiller S, Medigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE et al (2014) Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343:1366–1369

    Article  CAS  PubMed  Google Scholar 

  • Poulin-Laprade D, Burrus V (2015) A lambda cro-like repressor is essential for the induction of conjugative transfer of SXT/R391 elements in response to DNA damage. J Bacteriol 197:3822–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey PB, Rainey K (2003) Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74

    Article  CAS  PubMed  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    Article  CAS  PubMed  Google Scholar 

  • Raynes Y, Sniegowski PD (2014) Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity (Edinb) 113:375–380

    Article  CAS  Google Scholar 

  • Remigi P, Capela D, Clerissi C, Tasse L, Torchet R, Bouchez O, Batut J, Cruveiller S, Rocha EPC, Masson-Boivin C (2014) Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. PLoS Biol 12:e1001942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75

    Article  CAS  PubMed  Google Scholar 

  • Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155:24–35

    PubMed  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Hall AR, Lopez-Pascua LD, Buckling A (2011) Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 20:981–989

    Article  PubMed  Google Scholar 

  • Schauner C, Dary A, Lebrihi A, Leblond P, Decaris B, Germain P (1999) Modulation of lipid metabolism and spiramycin biosynthesis in Streptomyces ambofaciens unstable mutants. Appl Environ Microbiol 65:2730–2737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New York

    Google Scholar 

  • Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenafinger G, Marahiel M (2012) Nonribosomal peptides: biosynthesis. In: Natural products in chemical biology. https://doi.org/10.1002/9780470048672.wecb398 (ed. I John Wiley and Sons)

  • Schwarz S, Kehrenberg C, Ojo KK (2002) Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob Agents Chemother 46:3621–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plant. Nature 363:67–69

    Article  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stonesifer J, Matsushima P, Baltz RH (1986) High frequency conjugal transfer of tylosin genes and amplifiable DNA in Streptomyces fradiae. Mol Gen Genet 202:348–355

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Sullivan J, Ronson C (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335:457–461

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon O, Barrick J, Ribeck N, Deatherage D, Blanchard J, Dasgupta A, Wu G, Wielgoss S, Cruveiller S, Medigue C et al (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibessard A, Haas D, Gerbaud C, Aigle B, Lautru S, Pernodet JL, Leblond P (2015) Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. J Biotechnol 214:117–118

    Article  CAS  PubMed  Google Scholar 

  • Toleman M, Spencer J, Jones L, Walsh T (2012) blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother 56:2773–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Barcelo C, Kojadinovic M, Moxon R, MacLean RC (2015) The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Proc Biol Sci 282:20150885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Van Hofwegen DJ, Hovde CJ, Minnich SA (2016) Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA. J Bacteriol 198:1022–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL (2013) Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil streptomyces. PLoS One 8:e81064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velicer GJ, Kroos L, Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci U S A 95:12376–12380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velicer G, Kroos L, Lenski R (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598–601

    Article  CAS  PubMed  Google Scholar 

  • Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, Schuster SC (2006) Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103:8107–8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Linné C (1737) Genera plantarum: eorumque characteres naturales secundum numerum, figuram, situm, et proportionem omnium fructificationis partium. Lugduni Batavorum & Apud Conradum Wishoff, Leiden

    Book  Google Scholar 

  • Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27:87–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114

    Article  CAS  PubMed  Google Scholar 

  • Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ (1999) Different trajectories of parallel evolution during viral adaptation. Science 285:422–424

    Article  CAS  PubMed  Google Scholar 

  • Wielgoss S, Barrick JE, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2011) Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 genes. Genomes Genet (Bethesda) 1:183–186

    CAS  Google Scholar 

  • Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2013) Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A 110:222–227

    Article  CAS  PubMed  Google Scholar 

  • Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342:1364–1367

    Article  CAS  PubMed  Google Scholar 

  • Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 103:9107–9112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331:1433–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki M, Kinashi H (2004) Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid scp1. J Bacteriol 186:6553–6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O et al (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 108:7481–7486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Ser B Biol Sci 362:1195–1200

    Article  CAS  Google Scholar 

  • Yu YT, Yuan X, Velicer GJ (2010) Adaptive evolution of an sRNA that controls Myxococcus development. Science 328:993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111:E1130–E1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zotchev S (2014) Genomics-based insights into the evolution of secondary metabolite biosynthesis in Actinomycete Bacteria. In: Pontarotti P (ed) Evolutionary biology: genome evolution, speciation, coevolution and origin of life. Springer, Cham, pp 35–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Normand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wielgoss, S., Leblond, P., Masson-Boivin, C., Normand, P. (2018). Evolution Underway in Prokaryotes. In: Bertrand, JC., Normand, P., Ollivier, B., Sime-Ngando, T. (eds) Prokaryotes and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-99784-1_6

Download citation

Publish with us

Policies and ethics