Skip to main content

The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes

  • Chapter
  • First Online:
Prokaryotes and Evolution

Abstract

In natural world, no organism exists in absolute isolation, and thus every organism must interact with the environment and other organisms. Next-generation sequencing technologies are increasingly revealing that most of the cells in the environment resist cultivation in the laboratory and several prokaryotic divisions have no known cultivated representatives. Based on this, we hypothesize that species that live together in the same ecosystem are more or less dependent upon each other and are very large in diversity and number, outnumbering those that can be isolated in single-strain laboratory culture. In natural environments, bacteria and archaea interact with other organisms (viruses, protists, fungi, animals, plants, and human) in complex ecological networks, resulting in positive, negative, or no effect on one or another of the interacting partners. These interactions are sources of ecological forces such as competitive exclusion, niche partitioning, ecological adaptation, or horizontal gene transfers, which shape the biological evolution. In this chapter, we review the biological interactions involving prokaryotes in natural ecosystems, including plant, animal, and human microbiota, and give an overview of the insights into the evolution of living beings. We conclude that studies of biological interactions, including multipartite interactions, are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, the evolution of the cellular world, and the ecosystem services to the living beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–151

    Article  CAS  Google Scholar 

  • Ackermann HW (1999) Tailed bacteriophages : the order Caudovirales. AdvVirus Res 51(135):201. https://doi.org/10.1016/S0065-3527(08)60785-X

    Article  Google Scholar 

  • Akman L, Rio RV, Beard CB, Aksoy S (2001) Genome size determination and coding capacity of Sodalis glossinidius, an enteric symbiont of tsetse flies, as revealed by hybridization to Escherichia coli gene arrays. J Bacteriol 183:4517–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407

    Article  CAS  PubMed  Google Scholar 

  • Aksoy S (2000) Tsetse - a haven for microorganisms. Parasitol Today 16:114–118

    Article  CAS  PubMed  Google Scholar 

  • Aksoy S, Pourhosseini AA, Chow A (1995) Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to Enterobacteriaceae. Insect Mol Biol 4:15–22

    Article  CAS  PubMed  Google Scholar 

  • Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, Aksoy S, Caccone A (2014) Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 80:4301–4312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, Carnogursky J, Heddi A, Takac P, Galvani A, Aksoy S (2011) Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog 7:e1002415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson D.M., Cembella A.D., and G. M. Hallegraeff (ed.) (1998). Physiological ecology of harmful algal blooms, vol. G 41. Springer, Berlin, Germany

    Google Scholar 

  • Aoki S, Ito M, Iwasaki W (2013) From β- to α-Proteobacteria: the origin and evolution of Rhizobial nodulation genes nodIJ. Mol Biol Evol 30:2494–2508. https://doi.org/10.1093/molbev/mst153

    Article  CAS  PubMed  Google Scholar 

  • Arakaki N, Miyoshi T, Noda H (2001) Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc London Ser B 268:1011–1016

    Article  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azambuja P, Garcia ES, Ratcliffe NA (2005) Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 21:568–572

    Article  PubMed  Google Scholar 

  • Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BK (1998) Aminobacterium colombiense gen. Nov., sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250

    Article  CAS  PubMed  Google Scholar 

  • Baena S, Fardeau ML, Ollivier B, Labat M, Thomas P, Garcia JL, Patel BK (1999) Aminomonas paucivorans gen. Nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982

    Article  CAS  PubMed  Google Scholar 

  • Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BK (2000) Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 50:259–264

    Article  CAS  PubMed  Google Scholar 

  • Balmand S, Lohs C, Aksoy S, Heddi A (2013) Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 112(Suppl):S116–S122

    Article  PubMed  Google Scholar 

  • Bandi C, Trees AJ, Brattig NW (2001) Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 98:215–238

    Article  CAS  PubMed  Google Scholar 

  • Barile D, Rastall RA (2013) Human milk and related oligosaccharides as prebiotics. Curr Opin Biotechnol 24(2):214–219. https://doi.org/10.1016/j.copbio.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Beam HW, Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism. J Gen Microbiol 82:163–169

    Article  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci U S A 102(26):9306–9310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becking JH (1992) The rhizobium symbiosis of the non-legume Parasponia. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation: achievements and objectives. Chapman & Hall, New York, pp 497–559

    Google Scholar 

  • Bergthorsson U, Ochman H (1998) Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol 15:6–16

    Article  CAS  PubMed  Google Scholar 

  • Berleman JE et al (2014) The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 5:474. https://doi.org/10.3389/fmicb.2014.00474

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertrand J-C, Rambeloarisoa E, Rontani J-F, Guisti G, Mattei G (1983) Microbial degradation of crude oil in sea water and continuous culture. Biotechnol Lett 5:567–572

    Article  Google Scholar 

  • Bertrand J-C, Bonin P, Caumette P, Gattuso J-P, Grégori G, Guyoneaud LRX, Matheron R, Poly F (2015a) Biogeochemical cycles. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (eds) Environmental microbiology: fundamentals and aplications. Springer, Dordrecht/Heidelberg/New York/London, pp 511–617

    Google Scholar 

  • Bertrand J-C, Doumenq P, Guyoneaud R, Marrot B, Martin-Laurent F, Matheron R, Moulin P, Soulas G (2015b) Applied microbial ecology and bioremediation. Microorganisms as major actors of pollution elimination in the environment. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (eds) Environmental microbiology: fundamentals and aplications. Springer, Dordrecht/Heidelberg/New York/London, pp 659–753

    Google Scholar 

  • Boller EF, Russ K, Vallo V, Bush GL (1976) Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae), their origin and potential use in biological control. Entomol Exp Appl 20:237–247

    Article  Google Scholar 

  • Bonaldi K, Gourion B, Fardoux J, Hannibal L, Cartieaux F, Boursot M, Vallenet D, Chaintreuil C, Prin Y, Nouwen N, Giraud E (2010) Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica. Mol Plant-Microbe Interact 23:760–770. https://doi.org/10.1094/MPMI-23-6-0760

    Article  CAS  PubMed  Google Scholar 

  • Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E, Lawton RC, Neto NE, De Fatima Loureiro M, De Faria SM, Sprent JI, James EK, Young JP (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52. https://doi.org/10.1111/j.1365-294X.2009.04458.x

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S, Goñi-Urriza MS, Caumette P, Duran R. 2007. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol Oct;73(19):6089–6097. Epub 2007 Aug 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordenstein SR, Fitch DHA, Werren JH (2003) Absence of Wolbachia in nonfilariid nematodes. J Nematol 35:266–270

    PubMed  PubMed Central  Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugere JF (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679. https://doi.org/10.1186/1471-2164-15-679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugere JF, O’Toole PW (2017) Genomics and metagenomics of trimethylamine-utilizing archaea in the human gut microbiome. ISME J 11(9):2059–2074. https://doi.org/10.1038/ismej.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressac C, Rousset F (1993) The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol 61:226–230

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  CAS  PubMed  Google Scholar 

  • Browne HP, Neville BA, Forster SC, Lawley TD (2017) Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol 15(9):531–543. https://doi.org/10.1038/nrmicro.2017.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brüssow H, Hendrix RW (2002) Phagegenomics : small is beautiful. Cell 108:13–16. https://doi.org/10.1016/S0092-8674(01)00637-7

    Article  PubMed  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, Litvak Y, Lopez CA, Xu G, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Baumler AJ (2017) Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357(6351):570–575. https://doi.org/10.1126/science.aam9949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M et al (2014) Multiple polyploidy events in the early radiation of nodulating and non-nodulating legumes. Mol Biol Evol 32:193–210. https://doi.org/10.1093/molbev/msu296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cario E (2010) Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 16(9):1583–1597. https://doi.org/10.1002/ibd.21282

    Article  PubMed  Google Scholar 

  • Caron DA, Goldman JC, Dennett MR (1988) Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159:27–40

    Article  Google Scholar 

  • Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:297–354

    Article  CAS  PubMed  Google Scholar 

  • Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia nod factor. Can J Bot 77:1293–1301. https://doi.org/10.1139/b99-060

    Article  Google Scholar 

  • Cerqueda-García D, Martínez-Castilla LP, Falcón LI, Delaye L (2014) Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‘Chlorochromatium aggregatum. ISME J 8:991–998

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Gherbi H, Pirolles E, Vaissayre V, Fournier J, Moukouanga D, Franche C, Bogusz D, Tisa LS, Barker DG, Svistoonoff S (2016) Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol. https://doi.org/10.1111/nph.13732

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Hornett EA, Dyson EA, Ho PP, Loc NT, Schilthuizen M, Davies N, Roderick GK, Hurst GD (2005) Prevalence and penetrance variation of male-killing Wolbachia across indo-Pacific populations of the butterfly Hypolimnas bolina. Mol Ecol 14:3525–3530

    Article  CAS  PubMed  Google Scholar 

  • Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, Wedell N, Hurst GD (2007) Extraordinary flux in sex ratio. Science 317:214

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58

    Article  CAS  PubMed  Google Scholar 

  • Cheng TC (1991) Is parasitism symbiosis ? A definition of terms and the evolution of concepts. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite-host associations, coexistence or conflict? Oxford University Press, New York, pp 15–36

    Google Scholar 

  • Cheng Q, Aksoy S (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 8:125–132

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Ruel TD, Zhou W, Moloo SK, Majiwa P, O’Neill SL, Aksoy S (2000) Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 14:44–50

    Article  CAS  PubMed  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culler DE, Dehal PS, Desantis TZ, GihringI TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Adam P, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322(5899):275–278. https://doi.org/10.1126/science.1155495

    Article  CAS  PubMed  Google Scholar 

  • Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. https://doi.org/10.1038/nature11319

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ, Clooney AG, O’Toole PW (2017) A clinician’s guide to microbiome analysis. Nat Rev Gastroenterol Hepatol 14(10):585–595. https://doi.org/10.1038/nrgastro.2017.97

    Article  PubMed  Google Scholar 

  • Clark EL, Karley AJ, Hubbard SF (2010) Insect endosymbionts: manipulators of insect herbivore trophic interactions. Protoplasma 244:25–51

    Article  PubMed  Google Scholar 

  • Clavijo F, Diedhou I, Vaissayre V, Brottier L, Ascolate J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H, Champion A, Hocher V, Barker D, Bogusz D, Tisa L, Svistoonoff S (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903. https://doi.org/10.1111/nph.13506

    Article  CAS  PubMed  Google Scholar 

  • Clerissi C, Desdevises Y, Grimsley N (2012) Prasinoviruses of the marine green alga Ostreococcus tauri : are mainly species specific. J Virology 86:4611–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coburn PS, Gilmore MS (2003) The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 5:661–669

    Article  CAS  PubMed  Google Scholar 

  • Cornelis GR (2000) Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond Ser B Biol Sci 355:681–693

    Article  CAS  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. https://doi.org/10.1126/science.1177486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  • Dale C, Maudlin I (1999) Sodalis gen. Nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 1:267–275

    Article  Google Scholar 

  • Darby AC, Lagnel J, Matthew CZ, Bourtzis K, Maudlin I, Welburn SC (2005) Extrachromosomal DNA of the symbiont Sodalis glossinidius. J Bacteriol 187:5003–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidov Y, Jurkevitch E (2009) Predation between prokaryotes and the origin of eukaryotes. BioEssays 31:748–757. https://doi.org/10.1002/bies.200900018

    Article  CAS  PubMed  Google Scholar 

  • Dawson JO (2007) Ecology of Actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing Actinorhizal symbioses. Nitrogen fixation: origins, applications, and research Progress, vol 6. Springer, Dordrecht

    Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  • De León, K.B., Zane, G.M., Trotter, V.V., Krantz, G.P., Arkin, A.P., Butland, G.P., Walian, P.J., Fields, M.W., Wall, J.D. (2017). Unintended laboratory-driven evolution reveals genetic requirements for biofilm formation by desulfovibrio vulgaris Hildenborough (2017) MBio, 8 (5), art. no. e01696–17

    Google Scholar 

  • De Vooght L, Caljon G, Stijlemans B, De Baetselier P, Coosemans M, Van den Abbeele J (2012) Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Factories 11:23

    Article  CAS  Google Scholar 

  • De Vooght L, Caljon G, De Ridder K, Van Den Abbeele J. 2014. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Fact. 13:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vooght L, Caljon G, Van Hees J, Van Den Abbeele J (2015) Paternal transmission of a secondary Symbiont during mating in the viviparous tsetse Fly. Mol Biol Evol 32:1977–1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci U S A 98:6247–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedeine F, Vavre F, Shoemaker DD, Bouletreau M (2004) Intra-individual coexistence of a Wolbachia strain required for host oogenesis with two strains inducing cytoplasmic incompatibility in the wasp Asobara tabida. Evolution 58:2167–2174

    Article  PubMed  Google Scholar 

  • Degnan PH, Moran NA (2008a) Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol 17:916–929

    Article  CAS  PubMed  Google Scholar 

  • Degnan PH, Moran NA (2008b) Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol 74:6782–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A 106:9063–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diagne N, Diouf D, Svistoonoff S, Kane A, Noba K, Franche C et al (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manag 128:204–209. https://doi.org/10.1016/j.jenvman.2013.05.009

    Article  CAS  Google Scholar 

  • Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S, Gherbi H, Hocher V, Diouf D, Laplaze L, Champion A (2014) Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biol 14:342. https://doi.org/10.1186/s12870-014-0342-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson SL (2003) Reversing Wolbachia-based population replacement. Trends Parasitol 19:128–133

    Article  PubMed  Google Scholar 

  • Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160

    Article  CAS  PubMed  Google Scholar 

  • Dobson SL, Marsland EJ, Rattanadechakul W (2002) Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160:1087–1094

    PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI, Mendez K, Knight R, Clemente JC (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):250–253. https://doi.org/10.1038/nm.4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32. https://doi.org/10.1038/nrmicro3552

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K (2012) Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 12 Suppl 1:S3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Downie JA (2014) Legume nodulation. Curr Biol 24:184–190. https://doi.org/10.1016/j.cub.2014.01.028

    Article  CAS  Google Scholar 

  • Doyle JJ (1998) Phylogenetic perspectives on nodulation: an evolving views of plants and symbiotic bacteria. Trends Plant Sci 3:473–478. https://doi.org/10.1016/S1360-1385(98)01340-5

    Article  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant-Microbe Interact 24:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910. https://doi.org/10.1104/pp.102.018150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragoš A, Lakshmanan N, Martin M, Horváth B, Maróti G, Falcón García C, Lieleg O, Kovács ÁT (2018) Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol 94(1)

    Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    Article  CAS  PubMed  Google Scholar 

  • Duron O (2014) Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol Ecol 90:184–194

    Article  CAS  PubMed  Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyer KA, Jaenike J (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168:1443–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer KA, Minhas MS, Jaenike J (2005) Expression and modulation of embryonic male killing in Drosophila innubila: opportunities for multilevel selection. Evolution 59:838–848

    Article  PubMed  Google Scholar 

  • Ebert D, Herre EA (1996) The evolution of parasitic diseases. Parasitol Today 12:96–101

    Article  CAS  PubMed  Google Scholar 

  • Echaubard P, Duron O, Agnew P, Sidobre C, Noël V, Weill M, Michalakis Y (2010) Rapid evolution of Wolbachia density in insecticide resistant Culex pipiens. Heredity 104:15–19

    Article  CAS  PubMed  Google Scholar 

  • Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC (2016) Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nature Microbiol, 15032, doi:https://doi.org/10.1038/nmicrobiol.2015.32

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  CAS  PubMed  Google Scholar 

  • Engelstadter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annual Review of Ecology. Evol Syst 40:127–149

    Article  Google Scholar 

  • Engelstadter J, Telschow A (2009) Cytoplasmic incompatibility and host population structure. Heredity 103:196–207

    Article  CAS  PubMed  Google Scholar 

  • Fadhlaoui K, Ben-Hania W, Armougom F, Bartoli M, Fardeau ML, Erauso G, Brasseur G, Aubert C, Hamdi M, Brochier-Armanet C, Dolla A, Ollivier B (2018) Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor. Environ Microbiol 20:281–292

    Article  CAS  PubMed  Google Scholar 

  • Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D’Hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564. https://doi.org/10.1126/science.aad3503

    Article  CAS  PubMed  Google Scholar 

  • Farikou O, Njiokou F, Mbida Mbida JA, Njitchouang GR, Djeunga HN, Asonganyi T, Simarro PP, Cuny G, Geiger A (2010) Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes--an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol 10:115–121

    Article  PubMed  Google Scholar 

  • Farikou O, Thevenon S, Njiokou F, Allal F, Cuny G, Geiger A (2011) Genetic diversity and population structure of the secondary symbiont of tsetse flies, Sodalis glossinidius, in sleeping sickness foci in Cameroon. PLoS Negl Trop Dis 5:e1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16(7):1961–1981

    Article  CAS  PubMed  Google Scholar 

  • Fialho RF, Stevens L (2000) Male-killing Wolbachia in a flour beetle. Proc R Soc B Biol Sci 267:1469–1473

    Article  CAS  Google Scholar 

  • Flemer B, Gaci N, Borrel G, Sanderson IR, Chaudhary PP, Tottey W, O’Toole PW, Brugere JF (2017) Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes 8(5):428–439. https://doi.org/10.1080/19490976.2017.1334033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourçans A, Ranchou-Peyruse A, Caumette P, Duran R (2008) Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Microb Ecol 56(1):90–100

    Article  PubMed  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Frank SA (1996) Host control of symbiont transmission. The separation of symbionts into germ and soma. Am Nat 148:1113–1124

    Article  Google Scholar 

  • Frimmer U, Widdel F (1989) Oxidation of ethanol by methanogenic bacteria. Arch Microbiol 152:479–483

    Article  CAS  Google Scholar 

  • Fröstl MJ, Overmann J (1998) Physiology and tactic response of the phototrophic consortium chlorochromatium aggregatum. Arch Microbiol 169:129–135

    Article  PubMed  Google Scholar 

  • Froussart E, Bonneau J, Franche C, Bogusz D (2016) Recent advances in actinorhizal symbiosis signaling. Plant Mol Biol. https://doi.org/10.1007/s11104-016-0450-2

  • Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal water. Limnol Oceanogr 40:1236–1242

    Article  Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Gause GF (1935) Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Actual Scient ind 277:1–63

    Google Scholar 

  • Geiger A, Cuny G, Frutos R (2005) Two tsetse fly species, Glossina palpalis gambiensis and Glossina morsitans morsitans, carry genetically distinct populations of the secondary symbiont Sodalis glossinidius. Appl Environ Microbiol 71:8941–8943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24:102–109

    Article  CAS  PubMed  Google Scholar 

  • Geiger A, Fardeau ML, Grebaut P, Vatunga G, Josénando T, Herder S, Cuny G, Truc P, Ollivier B (2009) First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infect Genet Evol 9:1364–1370

    Article  PubMed  Google Scholar 

  • Geiger A, Fardeau ML, Falsen E, Ollivier B, Cuny G (2010) Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. Int J Syst Evol Microbiol 60:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Geiger A, Fardeau ML, Njiokou F, Joseph M, Asonganyi T, Ollivier B, Cuny G (2011) Bacterial diversity associated with populations of Glossina spp. from Cameroon and distribution within the campo sleeping sickness focus. Microb Ecol 62:632–643

    Article  PubMed  Google Scholar 

  • Gemerden V (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202. https://doi.org/10.1111/nph.12146

    Article  PubMed  Google Scholar 

  • Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352(6285):539–544. https://doi.org/10.1126/science.aad9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105:4928–4932. https://doi.org/10.1073/pnas.0710618105

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannone RJ, Huber H, Karpinets T, Heimerl T, Küper U, Rachel R, Keller M, Hettich RL, Podar M (2011) Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum equitans-Ignicoccus hospitalis relationship. PLoS One 6(8):e22942. https://doi.org/10.1371/journal.pone.0022942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannone RJ, Wurch LL, Heimerl T, Martin S, Yang Z, Huber H, Rachel R, Hettich RL, Podar M (2015) Life on the edge: functional genomic response of Ignicoccus hospitalis to the presence of Nanoarchaeum equitans. ISME J 9:101–114

    Article  CAS  PubMed  Google Scholar 

  • Gilboa-Garber N (1972) Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273:165–173

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC et al (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312. https://doi.org/10.1126/science.1139548

    Article  PubMed  Google Scholar 

  • Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75:815–826

    Article  CAS  PubMed  Google Scholar 

  • Glaser RL, Meola MA (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 5:e11977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godfroy O, Debellé F, Timmers T, Rosenberg C (2006) A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant. Mol Plant-Microbe Interact 19:495–501. https://doi.org/10.1094/MPMI-19-0495

    Article  CAS  PubMed  Google Scholar 

  • Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, McCoy KD, Macpherson AJ (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302. https://doi.org/10.1126/science.aad2571

    Article  CAS  PubMed  Google Scholar 

  • González JM, Sherr EB, Sherr BF (1990) Size selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589

    PubMed  PubMed Central  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124. doi:10.1371/journal.pbio.1001124

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh T, Sugasawa J, Noda H, Kitashima Y (2007) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42:1–16

    Article  PubMed  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106. https://doi.org/10.1016/S0378-4290(99)00080-5

    Article  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteves I, Mas J, Chase D, Margulis L (1986) Predatoryprokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A 83:2138–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Smemo KA, Yavitt J, Fowle DA, Branfireun BA, Basiliko N (2013) Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environ Sci Technol 47:8273–8279

    CAS  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617. https://doi.org/10.1146/annurev-cellbio-101512-122413

    Article  CAS  PubMed  Google Scholar 

  • Hahn D (2008) Polyphasic taxonomy of the genus Frankia. In: Pawlowski K, Newton WE (eds) Nitrogen –fixing actinorhizal symbioses. Springer, New York, pp 25–45. https://doi.org/10.1007/978-1-4020-3547-0-2

    Chapter  Google Scholar 

  • Hamerly T, Tripet BP, Tigges M, Giannone RJ, Wurch L, Hettich RL, Podar M, Copie V, Bothner B (2015) Untargeted metabolomics studies employing NMR and LC–MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis. Metabolomics 11:895–907. https://doi.org/10.1007/s11306-014-0747-6

    Article  CAS  PubMed  Google Scholar 

  • Hamidou Soumana I, Berthier D, Tchicaya B, Thevenon S, Njiokou F, Cuny G, Geiger A (2013) Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development. Infect Genet Evol 13:41–48

    Article  PubMed  Google Scholar 

  • Hamidou Soumana I, Loriod B, Ravel S, Tchicaya B, Simo G, Rihet P, Geiger A (2014a) The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness? Infect Genet Evol 24:41–56

    Article  PubMed  Google Scholar 

  • Hamidou Soumana I, Tchicaya B, Loriod B, Rihet P, Geiger A (2014b) Identification of overexpressed genes in Sodalis glossinidius inhabiting trypanosome-infected self-cured tsetse flies. Front Microbiol 5:255

    PubMed  PubMed Central  Google Scholar 

  • Hamidou Soumana I, Tchicaya B, Simo G, Geiger A (2014c) Comparative gene expression of Wigglesworthia inhabiting non-infected and Trypanosoma brucei gambiense-infected Glossina palpalis gambiensis flies. Front Microbiol 5:620

    PubMed  PubMed Central  Google Scholar 

  • Hamidou Soumana I, Klopp C, Ravel S, Nabihoudine I, Tchicaya B, Parrinello H, Abate L, Rialle S, Geiger A. 2015. RNA-seq de novo assembly reveals differential gene expression in Glossina palpalis gambiensis infected with Trypanosoma brucei gambiense vs. non-infected and self-cured flies. Front Microbiol. 6:1259

    Google Scholar 

  • Hamidou Soumana I, Tchicaya B, Rialle S, Parrinello H, Geiger A (2017) Comparative genomics of Glossina palpalis gambiensis and G. morsitans morsitans to reveal gene orthologs involved in infection by Trypanosoma brucei gambiense. Frontiers Microbiol in press

    Google Scholar 

  • Hamilton JJ, Contreras M, Reed JL (2015) Thermodynamics and H2 transfer in a methanogenic community. PLoS Comput Biol 11(7):e1004364. https://doi.org/10.1371/journal.pcbi.1004364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen SR, Hubbel SP (1980) Single-nutrient microbial competition : qualitative agreement between experimental and theoretically forecast outcomes. Science 207:1491–1493

    Article  CAS  PubMed  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445. https://doi.org/10.1038/nature05514

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev:439–471

    Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702–702

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D (2009) Germ warfare in a microbial mat Community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 4(1):e4169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendrix R (1999) The long evolutionary reach of viruses. Curr Biol 9:9914–9917

    Article  Google Scholar 

  • Hertig M (1936) The rickettsia, Wolbachia pipientis (gen. Et sp. n.) and associated inclusions of the mosquito Culex pipiens. Parasitology 28:454–486

    Article  Google Scholar 

  • Hertig M, Wolbach SB (1924) Studies on rickettsia-like microorganisms in insects. J Med Res 44:329–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertle R, Hilger M, Weingardt-Kocher S, Walev I (1999) Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infect Immun 67:817–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?--a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hiroki M, Kato Y, Kamito T, Miura K (2002) Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften 89:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M, Harshman LG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126:933–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hornett EA, Charlat S, Duplouy AM, Davies N, Roderick GK, Wedell N, Hurst GD (2006) Evolution of male-killer suppression in a natural population. PLoS Biol 4:e283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Küper U, Daxer S, Rachel R (2012) The unusual cell biology of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. Antonie Van Leeuwenhoek 102:203–219. https://doi.org/10.1007/s10482-012-9748-5

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72:2080–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Glossina Genome Initiative (2014) Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 344:380–386

    Article  PubMed Central  CAS  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, Chukualim B, Capewell P, MacLeod A, Melville SE, Gibson W, Barry JD, Berriman M, Hertz-Fowler C (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 4:e658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaenike J, Brekke TD (2011) Defensive endosymbionts: a cryptic trophic level in community ecology. Ecol Lett 14:150–155

    Article  PubMed  Google Scholar 

  • Jaenike J, Dyer KA (2008) No resistance to male-killing Wolbachia after thousands of years of infection. J Evol Biol 21:1570–1577

    Article  CAS  PubMed  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  CAS  PubMed  Google Scholar 

  • Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 190(5):1743–1750. https://doi.org/10.1128/JB.01731-07

    Article  CAS  PubMed  Google Scholar 

  • Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71:3483–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10(9):591–592

    Article  CAS  PubMed  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405

    Article  CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1998) Significance of lysogeny in the marine environments: studies with isolates and a model of lysogenic phage-production. Microb Ecol 35:235–243

    Article  CAS  PubMed  Google Scholar 

  • Jiggins FM, Hurst GD, Schulenburg JH, Majerus ME (2001) Two male-killing Wolbachia strains coexist within a population of the butterfly Acraea encedon. Heredity 86:161–166

    Article  CAS  PubMed  Google Scholar 

  • Jimenez E, Marin ML, Martin R, Odriozola JM, Olivares M, Xaus J, Fernandez L, Rodriguez JM (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159(3):187–193. https://doi.org/10.1016/j.resmic.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  • Jones EO, White A, Boots M (2007) Interference and the persistence of vertically transmitted parasites. J Theor Biol 246:10–17

    Article  CAS  PubMed  Google Scholar 

  • Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CG (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 111(20):7421–7426. https://doi.org/10.1073/pnas.1323599111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, To K, Shanks RMQ, Doi Y (2013) Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS One 8(5):e63397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama D, Nishimura G, Hoshizaki S, Ishikawa Y (2002) Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88:444–449

    Article  CAS  PubMed  Google Scholar 

  • Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335. https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  • Kambris Z, Cook PE, Phuc HK, Sinkins SP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6:e1001143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanzler BE, Pfanes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium ‘Chlorochromatium aggregatum. Appl Environ Microb 71:7434–7441

    Article  CAS  Google Scholar 

  • Keane R, Berleman J (2016) The predatory life cycle of Myxococcus xanthus. Microbiology 162:1–11. https://doi.org/10.1099/mic.0.00020

    Article  CAS  PubMed  Google Scholar 

  • Keller GP, Windsor DM, Saucedo JM, Werren JH (2004) Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). Mol Ecol 13:2405–2420

    Article  CAS  PubMed  Google Scholar 

  • Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6:e1001090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962. https://doi.org/10.1104/pp.011882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. Nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318

    Article  CAS  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594. https://doi.org/10.1080/10635150590947131

    Article  PubMed  Google Scholar 

  • Lawrence JG, Hatfull GF, Hendrix RW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 184:4891–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro JE, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite is antimalarial in vivo and non-mutagenic in vitro. J NatToxins 11:367–377

    CAS  Google Scholar 

  • Leadbetter ER, Foster JW (1958) Studies on some methane-utilizing bacteria. Archiv Mikrobio 30:91–118

    Article  CAS  Google Scholar 

  • Lebba V et al (2014) Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front Microbiol 5:1–9., article 280. https://doi.org/10.3389/fmicb.2014.00280

    Article  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microb 2:166–173

    Article  CAS  Google Scholar 

  • Lewis G, Schrire B, Mackind B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Li H-L, Wang W, Mortimer PE et al (2015) Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Sci Rep 5:14023. https://doi.org/10.1038/srep14023

    Article  PubMed  PubMed Central  Google Scholar 

  • Lidicker WZA (1979) Clarification of interactions in ecological systems. Bioscience 29:475–477

    Article  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356

    Article  CAS  PubMed  Google Scholar 

  • Lindh JM, Lehane MJ (2011) The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie Van Leeuwenhoek 99:711–720

    Article  PubMed  Google Scholar 

  • Liu Z et al (2013) Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”. Genome Biol 14:R127. https://doi.org/10.1186/gb-2013-14-11-r127

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Niu H, Wu S, Huang R (2014) CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg Microbes Infect 3:e1. https://doi.org/10.1038/emi.2014.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lively CM, Clay K, Wade MJ, Fuqua C (2005) Competitive co-existence of vertically and horizontally transmitted parasites. Evol Ecol Res 7:1183–1190

    Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51. https://doi.org/10.1186/s13073-016-0307-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Lønborg C, Middelboe M, Brussaard CP (2013) Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116:231–240

    Article  CAS  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898. https://doi.org/10.1105/tpc.8.10.1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackinder LCM, Worthy C, Biggi G, Hall M, Ryan KP, Varsani A et al (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90:2306–2316

    Article  CAS  PubMed  Google Scholar 

  • Mackowiak PA (2013) Recycling metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health 1:52. https://doi.org/10.3389/fpubh.2013.00052

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2015) Brock Biology of Microorganisms (14th Edition) Pearson Education

    Google Scholar 

  • Maeda H, Morihara K (1995) Serralysin and related bacterial proteinases. Methods Enzymol 248:395–413

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagés V, Haout A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63. https://doi.org/10.1038/nature09622

    Article  CAS  PubMed  Google Scholar 

  • Malele I, Nyingilili H, Lyaruu E, Tauzin M, Ollivier B, Fardeau M-L, Geiger A Bacterial diversity in the gut of G. pallidipes population from a non sleeping sickness focus in Tanzania and its implication for species’ vectorial capacity. BMC Microbiol in submission

    Google Scholar 

  • Malkin SY, Meysman FJR (2015) Rapid redox signal transmission by “cable Bacteria” beneath a photosynthetic biofilm. Appl Environ Microbial 81(3):948–956

    Article  CAS  Google Scholar 

  • Malvankar NS, Lovley DR (2014) Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 27:88–95

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  PubMed  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W. H. Freeman and Co, San Francisco

    Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. Microbial communities in the Archaean and Proterozoic eons. W. H. Freeman and Co, New York

    Google Scholar 

  • Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86. https://doi.org/10.1016/j.tplants.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor- kinase paved the way for the evolution of intracellular root symbioses with Bacteria. PLoS Biol 6:e68. https://doi.org/10.1371/journal.pbio.0060068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh JF, Rakocevic A, Mitra RM, Brocard L, Eschstruth A, Long SR, Schultze M, Ratet P, Oldroyd GE (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335. https://doi.org/10.1104/pp.106.093021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4(5):467–477

    CAS  PubMed  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61(4):839–846. https://doi.org/10.1111/j.1365-2958.2006.05272.x

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118. https://doi.org/10.1016/j.cell.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  • Mbewe NJ, Mweempwa C, Guya S, Wamwiri FN (2015) Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia. Vet Parasitol 211:93–98

    Article  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104:19392–19397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation : a central role for interspecies interactions. Aquat Biosyst 8(10). https://doi.org/10.1186/2046-9063-8-10

    Article  PubMed  PubMed Central  Google Scholar 

  • McInerney JO, O’Connell MJ, Pisani D (2014) The hybrid nature of the Eukaryota and a consilient view of life on earth. Nat Rev Microbiol 12:449–455

    Article  CAS  PubMed  Google Scholar 

  • McInnerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  Google Scholar 

  • Medina-Sanchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49:1722–1733

    Article  CAS  Google Scholar 

  • Mercado TI, Colon-Whitt A (1982) Lysis of Trypanosoma cruzi by Pseudomonas fluorescens. AntimicrobAgents Chemother 22:1051–1057

    Article  CAS  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G et al (2012) Zero-valent Sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    Article  CAS  PubMed  Google Scholar 

  • Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94:10792–10796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705. https://doi.org/10.1073/pnas.0400595101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant-Microbe Interact 19:914–923. https://doi.org/10.1094/MPMI-19-0914

    Article  CAS  PubMed  Google Scholar 

  • Moissl-Eichinger C, Hubert H (2011) Archaeal symbionts and parasites. Curr Opin Microbiol 14:364–370

    Article  PubMed  Google Scholar 

  • Mondot S, Lepage P (2016) The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci 1372(1):9–19. https://doi.org/10.1111/nyas.13033

    Article  PubMed  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Moore RL (1981) The biology of Hyphomicrobium and other prosthecate, budding bacteria. Annu Rev Microbiol 35:567–594

    Article  CAS  PubMed  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93:2873–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc London Ser B 253:167–171

    Article  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Moret Y, Juchault P, Rigaud T (2001) Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: effects in natural and foreign hosts. Heredity 86:325–332

    Article  CAS  PubMed  Google Scholar 

  • Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37:384–406. https://doi.org/10.1111/1574-6976.12019

    Article  CAS  PubMed  Google Scholar 

  • Moss M (2002) Bacterial pigments. Microbiologist 3:10–12

    Google Scholar 

  • Mouton L, Dedeine F, Henri H, Boulétreau M, Profizi N, Vavre F (2004) Virulence, multiple infections and regulation of symbiotic population in the Wolbachia/Asobara tabida symbiosis. Genetics 168:181–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller N, Griffin BM, Stingl U, Schink B (2008) Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ Microbiol 10:1501–1511

    Article  CAS  Google Scholar 

  • Müller J, Overmann J (2011) Close interspecies interactions between prokaryotes from sulfureous environments. Front Microbiol 2:146. https://doi.org/10.3389/fmicb.2011.0014

    Article  PubMed  PubMed Central  Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané J-M, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710. https://doi.org/10.1128/AEM.01055-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267–267

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Imaizumi-Anraku H (2015) Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice 8:32. https://doi.org/10.1186/s12284-015-0067-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Negri I, Pellecchia M, Mazzoglio PJ, Patetta A, Alma A (2006) Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proc R Soc London Ser B 273:2409–2416

    Article  CAS  Google Scholar 

  • Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074. https://doi.org/10.1038/nature08790

    Article  CAS  PubMed  Google Scholar 

  • Nogge G (1982) Significance of symbionts for the maintenance of an optional nutritional state for successful reproduction in hematophagous arthropods. Parasitology 82:299–304

    Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9. https://doi.org/10.1099/00207713-46-1-1

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15. https://doi.org/10.1101/gr.5798407

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack EC, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  CAS  PubMed  Google Scholar 

  • Nzila A (2013) Update on the cometabolism of organic pollutants by bacteria. Environ Poll 178:474–482

    Article  CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill SL, Gooding RH, Aksoy S (1993) Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol 7:377–383

    Article  PubMed  Google Scholar 

  • O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215. https://doi.org/10.1126/science.aac8469

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Noisangiam R, Okubo T, Kaneko T, Oshima K, Hattori M, Teamtisong K, Songwattana P, Tittabutr P, Boonkerd N, Saeki K, Sato S, Uchiumi T, Minamisawa K, Teaumroong N (2015) Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. PLoS One 10:e0117392. doi:10.1371/journal.pone.0117392

    Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev. Microbiol. 11:252–263. https://doi.org/10.1038/nrmicro2990

    Article  CAS  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. https://doi.org/10.1146/annurev-genet-110410-132549

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B Biol Sci 275:293–299

    Article  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Op den Camp, R.H. (2012). Evolution of rhizobium symbiosis. Thesis, Wageningen University, ISBN 978-94-6137-198-2

    Google Scholar 

  • Op den Camp R, Streng A, De Mita S, Cao Q, Polone E et al (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912. https://doi.org/10.1126/science.1198181

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp RH, Polone E, Fedorova E et al (2012) Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol Plant-Microbe Interact 25:954–963

    Article  CAS  PubMed  Google Scholar 

  • Ostaff MJ, Stange EF, Wehkamp J (2013) Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 5(10):1465–1483. https://doi.org/10.1002/emmm.201201773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208

    Article  CAS  PubMed  Google Scholar 

  • Paerl H, Pinckney J (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  CAS  PubMed  Google Scholar 

  • Pagé A, Tivey MK, Stakes DS, Reysenbach AL (2008) Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ Microbiol 10(4):874–884

    Article  PubMed  CAS  Google Scholar 

  • Pais R, Lohs C, Wu YN, Wang JW, Aksoy S (2008) The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol 74:5965–5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palesse S. (2014) Déterminisme de la Decision lysogénique au sein des communautés virales aquatiques: importance des fluctuations physiologiques et métaboliques. PhD Thesis, Université Clermont Auvergne, 165 pp.

    Google Scholar 

  • Pamp SJ, Gjermansen M, Tolker-Nielsen T (2007) The biofilm matrix: a sticky framework. In the biofilm mode of life: mechanisms and adaptations. Kjelleberg, S., and Givskov, M. (eds). Norfolk, UK: horizon. Bioscience:37–69

    Google Scholar 

  • Pasternak Z et al (2014) In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J 8:625–635

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and Actinorhizal symbioses: what are the shared features? Plant Cell 8:1899–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18(3):766–779

    Article  PubMed  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nature Review Microbiol 3:537–546

    Article  CAS  Google Scholar 

  • Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce DC, Detter C, Tapia R, Han S, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Ivanova N, Pati A, Land ML, Pawlowski K, Berry AM (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018. https://doi.org/10.1128/JB.06208-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, Pujic P, Facciotti MT, Wilbanks EG, O'Brien A, Fournier P, Cruz Hernandez MA, Mendoza Herrera A, Médigue C, Normand P, Pawlowski K, Berry AM (2015) Candidatus Frankia Datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS One e0127630:10. https://doi.org/10.1371/journal.pone.0127630

    Article  CAS  Google Scholar 

  • Pfennig N, Biebl H (1976) “Desulfuromonas acetoxidans” gen. Nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    Article  CAS  PubMed  Google Scholar 

  • Pradeep Ram AS, Sime-Ngando T (2010) Resources drive trade-off between viral lifestyles in the plankton: evidence from freshwater microbial microcosms. Environ Microbiol 12:467–479

    Article  CAS  PubMed  Google Scholar 

  • Pradeep Ram AS, Boucher D, Sime-Ngando T, Debroas D, Romagoux JC (2005) Phage bacteriolysis, protistan bacterivory potential, and bacterial production in a freshwater reservoir: coupling with temperature. Microb Ecol 50:64–72

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the archaea: a unifying view. Nature Rev. Microbiol. 4:837–848

    Article  CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium BP, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759

    Article  CAS  PubMed  Google Scholar 

  • Ravel S, Grébaut P, Cuisance D, Cuny G (2003) Monitoring the developmental status of Trypanosoma brucei gambiense in the tsetse fly by means of PCR analysis of anal and saliva drops. Acta Trop 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1997) Phagotrophy in phototrophs. Limnol Oceanogr 42:198–205

    Article  CAS  Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Metha T, Nicoli JS, Teominen MT, Loveley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Reichert AS, Neupert W (2004) Mitochondriomics or what makes us breathe. Trends Genet 20:555–562

    Article  CAS  PubMed  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within Symbiosis: evolving nitrogen-fixing legume Symbionts. Trends Microbiol 24:63–75. https://doi.org/10.1016/j.tim.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  PubMed  Google Scholar 

  • Reynolds KT, Thomson LJ, Hoffmann AA (2003) The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 164:1027–1034

    PubMed  PubMed Central  Google Scholar 

  • Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181

    Article  CAS  PubMed  Google Scholar 

  • Rigaud T, Moreau M (2004) A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion in a terrestrial isopod. Proc R Soc London Ser B 271:1941–1946

    Article  Google Scholar 

  • Rigaud T, Juchault P, Mocquard JP (1997) The evolution of sex determination in isopod crustaceans. BioEssays 19:409–416

    Article  Google Scholar 

  • Rinke C et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437. https://doi.org/10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  • Rio RV, Lefevre C, Heddi A, Aksoy S (2003) Comparative genomics of insect-symbiotic bacteria: influence of host environment on microbial genome composition. Appl Environ Microbiol 69:6825–6832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio RV, Hu Y, Aksoy S (2004) Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol 12:325–336

    Article  CAS  PubMed  Google Scholar 

  • Rio RVM, Symula RE, Wang J, Lohs C, Wu YN, Snyder AK, Bjornson RD, Oshima K, Biehl BS, Perna NT, Hattori M, Aksoy S (2012) Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. MBio 3:e00240–e00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rípodas C, Clúa J, Battaglia M, Baudin M, Niebel A, Zanetti ME, Blanco F (2014) Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango. Plant Signal Behav 9:e28847. https://doi.org/10.4161/psb.28847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rishiram R, Byung-Hyuk K, Dae-Hyun C, Hee-Mock O, Hee-Sik K (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  Google Scholar 

  • Rodriguez JM (2014) The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutrit (Bethesda, Md) 5(6):779–784. https://doi.org/10.3945/an.114.007229

    Article  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  CAS  PubMed  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Loveley DR (2014a) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Ener Environ Sci 7:408–415

    Article  CAS  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Loveley DR (2014b) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F, Raymond M, Kjellberg F (1991) Cytoplasmic incompatibilities in the mosquito Culex pipiens: how to explain a cytotype polymorphism. J Evol Biol 4:69–81

    Article  Google Scholar 

  • Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Ruvindy R, White RA 3rd, Neilan BA, Burns BP. 2016 Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J 10(1):183–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  PubMed  Google Scholar 

  • Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103(26):10011–10016. https://doi.org/10.1073/pnas.0602187103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104(25):10643–10648. https://doi.org/10.1073/pnas.0704189104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandstrom JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    Article  CAS  PubMed  Google Scholar 

  • Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25(5):370–377. https://doi.org/10.1016/j.smim.2013.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbicego S, Vassella E, Kurath U, Blum B, Roditi I (1999) The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms. Mol Biochem Parasitol 104:311–322

    Article  CAS  PubMed  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781–1781

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdinon the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41:1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nature Rev Microbiol 13:605–619. https://doi.org/10.1038/nrmicro3525

    Article  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 407:81–86

    Article  CAS  PubMed  Google Scholar 

  • Shrestha PM, Rotaru AE (2014) Plugging in or going wirelesss: strategies for interspecies electron transfer. Front Microbiol 5:237

    PubMed  PubMed Central  Google Scholar 

  • Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Zarath M, Summers ZM, Malvankar N, Flores DC, Lovley DR (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5:904–910

    Article  CAS  PubMed  Google Scholar 

  • Sime-Ngando T (2014) Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Frontiers Microbiol 5:355

    Article  Google Scholar 

  • Sime-Ngando T, Colombet J (2009) Virus et prophages dans les écosystèmes aquatiques. Can J Microbiol 55:95–109

    Article  CAS  PubMed  Google Scholar 

  • Sime-Ngando T, Niquil N (eds) (2011) Disregarded microbial diversity and ecological potentials in aquatic systems. Springer, New York

    Google Scholar 

  • Sime-Ngando T, Lefèvre E, Gleason F (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. In: Sime-Ngando T, Niquil N (eds) Disregarded microbial diversity and ecological potentials in aquatic systems. Springer, New York

    Google Scholar 

  • Sinkins SP, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7:427–435

    Article  CAS  PubMed  Google Scholar 

  • Sinkins SP, Braig HR, O'Neill SL (1995) Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol 81:284–291

    Article  CAS  PubMed  Google Scholar 

  • Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HC, Parkhill J (2005) Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 436:257–260

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Nevin KP, Lovley DR (2015) Syntrophy growth via quinone-mediated interspecies electron transfer. Front Microbiol 6:121

    PubMed  PubMed Central  Google Scholar 

  • Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV (2010) Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 277:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539. https://doi.org/10.1146/annurev.micro.091208.073346

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 92:2647–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290. https://doi.org/10.1038/nrmicro2540

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanical Gardens, Kew, UK

    Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Sousa DZ, Kleerebezem R, Plugge CM (2012) Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci Technol 66:352–362

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. Symp Soc Gen Mircrobiol 20:1–38

    Google Scholar 

  • Starr DJ, Cline TW (2002) A host parasite interaction rescues Drosophila oogenesis defects. Nature 418:76–79

    Article  CAS  PubMed  Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate? Theor. Popul Biol 26:93–117

    Article  CAS  Google Scholar 

  • Stewart AD, Logsdon JM, Kelley SE (2005) An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59:730–739

    Article  PubMed  Google Scholar 

  • Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera, Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A 87:2424–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streng A, Op den Camp R, Bisseling T, Geurts R (2011) Evolutionary origin of rhizobium nod factor signaling. Plant Signal Behav 6:1510–1514. https://doi.org/10.4161/psb.6.10.17444

    Article  CAS  Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Ann Rev Microbiol 55:437–451

    Article  CAS  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses: major players in the global ecosystem. Nature Rev Microbiol 5:801–812

    Article  CAS  Google Scholar 

  • Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 8:e64515. https://doi.org/10.1371/journal.pone.0064515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbioses : evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512

    Article  Google Scholar 

  • Taylor FJ (1978) Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. Biosystems 10:67–89

    Article  CAS  PubMed  Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763

    Article  CAS  Google Scholar 

  • Teske M, Hinrichs K-U, Edgcomb V, Gomez A d V, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic Methanotrophic communities. Appl Environ Microbiol 68(4):1994–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thingstad, T..F, and Lignell, R. (1997). Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand, Aquat Microb Ecol 13, 19–27

    Article  Google Scholar 

  • Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of ‘eating your competitor’: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118

    Article  Google Scholar 

  • Thomas R, Grimsley N, Escande M-L, Subirana L, Derelle E, Moreau H (2011) Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ Microbiol 13:1412–1420

    Article  PubMed  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. MolMicrobiol 36:539–556

    CAS  Google Scholar 

  • Timmers PHA, Diego A, Suarez-Zuluaga DAS, van Rossem M, Diender M, Stams AJM, Plugge CM (2016) Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J 10:1400–1412

    Article  CAS  PubMed  Google Scholar 

  • Toft CA, Karter AJ (1990) Parasite-host coevolution. Tren Ecol Evol 5:326–329

    Article  CAS  Google Scholar 

  • Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Trinick MJ (1973) Symbiosis between rhizobium and the non-legume, Trema aspera. Nature 244:459–460. https://doi.org/10.1038/244459a0

    Article  Google Scholar 

  • Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by rhizobium on roots of Parasponia andersonii. Planch Can J Microbiol 25:565–578. https://doi.org/10.1139/m79-082

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    Article  PubMed  Google Scholar 

  • Valbuena G, Walker DH (2009) Infection of the endothelium by members of the order Rickettsiales. Thromb Haemost 102:1071–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valen V (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Van den Abbeele J, Claes Y, Bockstaele D, Ray D, Coosemans M (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118:469–478

    Article  Google Scholar 

  • van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225

    Article  PubMed  Google Scholar 

  • Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, Teughels W (2011) Killing of anaerobic pathogens by predatory bacteria. Mol Oral Biol 26:52–61

    Google Scholar 

  • Van Nguyen T, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K (2016) An assemblage of Frankia cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genomics 17:796. https://doi.org/10.1186/s12864-016-3140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernié T, Kim J, Frances L, Ding Y, Sun J, Guan D, Niebel A, Gifford ML, de Carvalho Niebel F, Oldroyd GE (2015) The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell 27:3410–3424. https://doi.org/10.1105/tpc.15.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Aksoy S (2012) PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring. Proc Natl Acad Sci U S A 109:10552–10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand JD, Deng Y, He Z, Wu L, Zhou J, Xiao X. 2009a. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca ridge hydrothermal vent. Proc Natl Acad Sci U S A 24;106(12):4840–4845

    Article  CAS  Google Scholar 

  • Wang J, Wu Y, Yang G, Aksoy S (2009b) Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci U S A 106:12133–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009c) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci U S A 106:3853–3858. https://doi.org/10.1073/pnas.0813376106

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Weiss BL, Aksoy S (2013) Tsetse fly microbiota: form and function. Front Cell Infect Microbiol 3:69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanner G, Vogl K, Overmann J (2008) Ultrastructural characterization of the prokaryotic Symbiosis in “Chlorochromatium aggregatum”. J Bacteriol 190(10):3721. https://doi.org/10.1128/JB.00027-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warthmann R, Cypionka H, Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157:343–348

    Article  CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Jingwei Ni J, Podar M, Richardson T, Granger GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A 100:12984–12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks AR, Breeuwer JA (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc London Ser B 268:2245–2251

    Article  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 4:1–11

    Google Scholar 

  • Weiss B, Aksoy S (2011) Microbiome influences on insect host vector competence. Trends Parasitol 27:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss BL, Mouchotte R, Rio RV, Wu YN, Wu Z, Heddi A, Aksoy S (2006) Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl Environ Microbiol 72:7013–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss BL, Wang J, Aksoy S (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9:e1000619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S (2013) Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog 9:e1003318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welburn SC, Arnold K, Maudlin I, Gooday GW (1993) Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology 107:141–145

    Article  PubMed  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  CAS  PubMed  Google Scholar 

  • Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:4087. https://doi.org/10.1038/ncomms5087

    Article  CAS  PubMed  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc London Ser B 267:1277–1285

    Article  CAS  Google Scholar 

  • Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc R Soc London Ser B 262:197–204

    Article  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864

    Article  CAS  PubMed  Google Scholar 

  • Wieland A, Zopfi J, Benthien M, Kühl M (2005) Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microb Ecol 49(1):34–49

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Article  Google Scholar 

  • Wilkinson TG, Topiwals H, Hamer G (1974) Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol Bioeng 6:41–59

    Article  Google Scholar 

  • Windsor DA (1998) Most of the species on earth are parasites. Int J Parasitol 28:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Winkel M, de Beer D, Lavik G, Peplies J and Mußmann M. 2014. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol 16(6), 1612–1626

    Article  PubMed  CAS  Google Scholar 

  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A (2011) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME. J Mar 5(3):414–426

    Google Scholar 

  • Yamaguchi M et al (2012) Prokaryote or eukaryote? A unique microorganism from the deep sea. J Electron Microsc 61(6):423–431. https://doi.org/10.1093/jmicro/dfs062

    Article  CAS  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Protein function: chaperonin turned insect toxin. Nature 411:44

    Article  CAS  PubMed  Google Scholar 

  • Zeh DW, Zeh JA, Bonilla MM (2005) Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity 95:41–49

    Article  CAS  PubMed  Google Scholar 

  • Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569. https://doi.org/10.1126/science.aad3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114. https://doi.org/10.1007/s13199-009-0039-5

    Article  Google Scholar 

  • Zhu H, Riely BK, Burns NJ, Ané JM (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172:2491–2499. https://doi.org/10.1534/genetics.105.051185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the “Institut de Recherche pour le Développement,” the International Atomic Energy Agency (IAEA), and “France Génomique” for their support. This project has received funding from the French ANR under grant agreement ANR-12-BSV7-0019. The initial figures were improved by M. A. Galeron; thanks to our co-author B.O. for the payment of the associated costs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Télesphore Sime-Ngando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sime-Ngando, T. et al. (2018). The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. In: Bertrand, JC., Normand, P., Ollivier, B., Sime-Ngando, T. (eds) Prokaryotes and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-99784-1_5

Download citation

Publish with us

Policies and ethics