Skip to main content

A Coordinated Stable-Effective Compromises Based Methodology of Design and Control in Multi-object Systems

  • Chapter
  • First Online:
Book cover Smart Electromechanical Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 174))

Abstract

In article the game hierarchical approach based optimization methodology of smart electromechanical systems group control with the principle of the coordinated stable-effective compromises application is developed. The problem of optimization of group control is decomposed into classes of problems of local, distributed and hierarchical control, taking into account structural and functional inconsistency, conflict, multicriteria, and uncertainty. Such structuring allows to consider different conditions of conflict group interaction of subsystems. The principle of coordinated stable-effective compromises, generalizing the Stackelberg hierarchical equilibrium principle, is formulated. The guaranteeing properties of stable-effective control laws are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalyaev, I.A., Gaiduk, A.R., Kapustyan, S.G: Models and Algorithms of Collective Control in Groups of Robots, 280 p. Fizmatlit (2009)

    Google Scholar 

  2. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: IEEE Transaction on Automatic Control, May 2003

    Google Scholar 

  3. Dahl, T.S., Mataric, M.J., Sukhatme, G.S.: Emergent robot differentiation in distributed multi-robot task allocation. In: Proceedings of the 7th International Symposium on Distributed Autonomous Robotic Systems (DARS-04), Toulouse, France (2004)

    Google Scholar 

  4. Bruce, J., Bowling, M., Browning, B., Veloso, M.: Multi-robot team response to a multi-robot opponent team. In: Proceedings of ICRA ’03, the 2003 IEEE International Conferenceon Robotics and Automation, Taiwan, May 2003

    Google Scholar 

  5. Voronov, E.M.: In: Egupov, D. (ed.) Methods of Optimization of Control of Multi-object Multi-criteria Systems on the Basis of Stable-Effective Game Solutions, 576 p. BMSU, Moscow (2001)

    Google Scholar 

  6. Vorobyiov, N.N.: Fundamentals of the Theory of Games. Noncooperative Games, 496 p. Science, Moscow (1984)

    Google Scholar 

  7. Vilkas, E.T.: Optimality in Games and Solutions, 256 p. Science, Moscow (1990)

    Google Scholar 

  8. Zhukovsky, V.I., Chikry, A.A.: Linear-Quadratic Differential Games, 320 p. Naukova Dumka, Kyiv (1994)

    Google Scholar 

  9. Zhukovsky, V.I., Zhukovskaya, L.V.: In: Molostvov, V.S. (ed.) Risk in Multi-criteria and Conflict Systems Under Uncertainty, 272 p. Editorial URSS, Moscow (2004)

    Google Scholar 

  10. Harsanyi, G., Reinhard, Z.: General Theory of Equilibrium Choice in Games, 424 p. SPb (2001)

    Google Scholar 

  11. Smolyakov, E.R.: Theory of Conflict Equilibria, 304 p. Editorial URSS, Moscow (2005)

    Google Scholar 

  12. Gorelov, M.A., Kononenko, A.F.: Dynamic models of conflict. II. Equilibrium. Autom. Telemechanics (12), 56–77 (2014)

    Google Scholar 

  13. Gorelov, M.A., Kononenko, A.F.: Dynamic models of conflict. III. Hierarchical games. Autom. Telemechanics (2), 89–106 (2015)

    Article  MathSciNet  Google Scholar 

  14. Gorelik, V.A., Rodyukov, A.V., Tarakanov, A.F.: Hierarchical game under uncertainty using risk players and guaranteed assessment strategies. Izv. RAS Theory Control Syst. (6), 94–101 (2009)

    Google Scholar 

  15. Govorov, A.N., Tarakanov, A.F.: Coalition-hierarchical game under uncertainty. Izv. RAS Theory Control Syst. (3), 75–80 (2008)

    Google Scholar 

  16. Moya, S.: The calculation of the Stackelberg–Nash equilibrium as a fixed point problem in static hierarchical games. Int. J. Dyn. Control 1–12 (2017)

    Google Scholar 

  17. Léon, E., Pape, A., Costes, M., Désidéri, J., Alfano, D.: Concurrent aerodynamic optimization of rotor blades using a Nash game method. J. Am. Helicopter Soc. 61(2), 1–13 (2016)

    Article  Google Scholar 

  18. Leskinen, J., Périaux, J.: Distributed evolutionary optimization using Nash games and GPUs-applications to CFD design problems. Comput Fluids 80, 190–201 (2013)

    Article  MathSciNet  Google Scholar 

  19. Periaux, J., Greiner, D.: Efficient parallel Nash genetic algorithm for solving inverse problems in structural engineering. In: Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol. 40, pp. 205–228. Springer, New York (2016)

    Google Scholar 

  20. Ungureanu, V.: Pareto-Nash-Stackelberg Game and Control Theory: Intelligent Paradigms and Applications (Smart Innovation, Systems and Technologies), 579 p. Springer (2017). ISBN 10 3319751506, ISBN 13 978-3319751504

    Google Scholar 

  21. Serov, V.A.: Stable-equilibria control in a hierarchical game model of a structurally complex system under uncertainty. In: Popkov, Y.S. (ed.) Proceedings of the Institute for System Analysis RAS. Dynamics of Heterogeneous Systems, vol. 10(1), pp. 64–76. Komkniga, Moscow (2006)

    Google Scholar 

  22. Vanin, A.V., Voronov, E.M., Serov, V.A., Karpunin, A.A., Liubavskii, K.K.: Optimization of hierarchical systems “guidance-stabilization” of the aircraft with the adaptation of the stabilization system. Vestnik BMSTU Ser. Instrum. Making (4), 13–33 (2015)

    Google Scholar 

  23. Voronov, E.M., Karpunin, A.A., Serov, V.A.: The hierarchical equilibrium in multilevel control systems. Vestnik RUDN. Ser. Eng. Res. (4), 18–29 (2008)

    Google Scholar 

  24. Voronov, E.M., Karpunin, A.A., Serov, V.A.: Hierarchical equilibrium in two-level aircraft guidance-stabilization systems. In: Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS’09): Proceedings of the IFAC Workshop, June 30–July 2, 2009, Samara, Russia. The International Physics and Control Society (IPACS) Electronic Library. http://lib.physcon.ru/?item=21. 6 p

  25. Serov, V.A., Voronov, E.M.: Evolutionary algorithms for finding of a stable-effective compromises in multi-object control problems (in this collection)

    Google Scholar 

  26. Mesarovich, M., Mako, D., Takahara, I.: Theory of Hierarchical Multilevel Systems, 344 p. World, Moscow (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny M. Voronov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voronov, E.M., Serov, V.A. (2019). A Coordinated Stable-Effective Compromises Based Methodology of Design and Control in Multi-object Systems. In: Gorodetskiy, A., Tarasova, I. (eds) Smart Electromechanical Systems. Studies in Systems, Decision and Control, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-99759-9_12

Download citation

Publish with us

Policies and ethics