Skip to main content

Linear Boltzmann Equations: A Gradient Flow Formulation

  • Conference paper
  • First Online:
  • 453 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 258))

Abstract

I present some results obtained together with D. Benedetto and L. Bertini on a gradient flow formulation of linear kinetic equations, in terms of an entropy dissipation inequality. The setting includes the current as a dynamical variable. As an application I discuss the diffusive limit of linear Boltzmann equations and show that the rescaled entropy inequality asymptotically provides the corresponding inequality for heat equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307(3), 791–815 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Spaces of Probability Measures. Lectures in Mathematics. ETH Zurich, Birkhuser (2005)

    MATH  Google Scholar 

  3. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984)

    Article  MathSciNet  Google Scholar 

  4. Basile, G., Olla, S., Spohn, H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195(1), 171–203 (2010)

    Article  MathSciNet  Google Scholar 

  5. Basile, G., Benedetto, D., Bertini, L.: A gradient flow approach to linear Boltzmann equation. Preprint on arXiv:1707.09204 (2017)

  6. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Boundary Layers and Homogenization of Transport Processes, vol. 15, pp. 53–157. RIMS Kyoto University (1979)

    Google Scholar 

  8. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviations of the empirical current in interacting particle systems. Theory Probab. Appl. 51(1), 2–27 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bertini, L., Faggionato, A., Gabrielli, D.: Flows, currents, and cycles for Markov chains: large deviation asymptotics. Stoch. Process. Appl. 125(7), 2786–2819 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203(2), 493–553 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dawson, D.A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987)

    Article  MathSciNet  Google Scholar 

  12. De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Serie 8 68(3), 180–187 (1980)

    Google Scholar 

  13. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. II. Comm. Pure Appl. Math. 28, 1–47, ibid. 28, 279–301 (1975)

    Google Scholar 

  14. Erbar, M.: Gradient flows of the entropy for jump processes. Ann. Inst. H. Poincar Probab. Statist. 50(3), 920–945 (2014)

    Article  MathSciNet  Google Scholar 

  15. Erbar, M.: A gradient flow approach to the Boltzmann equation. Preprint on arXiv:1603.00540 (2017)

  16. Esposito, R., Pulvirenti, M.: From particles to fluids. In: Hand-Book of Mathematical Fluid Dynamics III, pp. 1–82. North-Holland, Amsterdam (2004)

    Google Scholar 

  17. Gallavotti, G.: Grad Boltzmann limit and Lorentzs Gas. In: Statistical Mechanics. A Short Treatise. Appendix 1.A2. Springer, Berlin (1999)

    Chapter  Google Scholar 

  18. Gigli, N.: On the Heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Part. Diff. Eq. 39, 101–120 (2010)

    Article  MathSciNet  Google Scholar 

  19. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  20. Kipnis, C., Olla, S.: Large deviations from the hydrodynamical limit for a system of independent Brownian particles. Stoch. Stoch. Rep. 33(1–2), 17–25 (1990)

    Article  MathSciNet  Google Scholar 

  21. Larsen, E., Keller, J.B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15, 75–81 (1974)

    Article  MathSciNet  Google Scholar 

  22. Lorentz, H.A.: The motion of electrons in metallic bodies. Proc. Acad. Amst. 7, 438–453 (1905)

    Google Scholar 

  23. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)

    Article  MathSciNet  Google Scholar 

  24. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differ. Equ. 48, 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mielke, A., Peletier, M.A., Renger, D.R.M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41(4), 1293–1327 (2014)

    Article  MathSciNet  Google Scholar 

  26. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation

    Google Scholar 

  27. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  Google Scholar 

  28. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  MathSciNet  Google Scholar 

  29. van Beijeren, H., Lanford III, O.E., Lebowitz, J.L., Spohn, H.: Equilibrium time correlation functions in the low-density limit. J. Stat. Phys. 22(2), 237–257 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giada Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basile, G. (2018). Linear Boltzmann Equations: A Gradient Flow Formulation. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations . PSPDE 2016. Springer Proceedings in Mathematics & Statistics, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-319-99689-9_4

Download citation

Publish with us

Policies and ethics