Skip to main content

Concept Tracking and Adaptation for Drifting Data Streams under Extreme Verification Latency

  • Conference paper
  • First Online:
Intelligent Distributed Computing XII (IDC 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 798))

Included in the following conference series:

Abstract

When analyzing large-scale streaming data towards resolving classification problems, it is often assumed that true labels of the incoming data are available right after being predicted. This assumption allows online learning models to efficiently detect and accommodate non-stationarities in the distribution of the arriving data (concept drift). However, this assumption does not hold in many practical scenarios where a delay exists between predicted and class labels, to the point of lacking this supervision for an infinite period of time (extreme verification latency). In this case, the development of learning algorithms capable of adapting to drifting environments without any external supervision remains a challenging research area to date. In this context, this work proposes a simple yet effective learning technique to classify non-stationary data streams under extreme verification latency. The intuition motivating the design of our technique is to predict the trajectory of concepts in the feature space. The estimation of the region where concepts may reside in the future can be then exploited for producing more updated predictions for newly arriving examples, ultimately enhancing its accuracy during this unsupervised drifting period. Our approach is compared to a benchmark of incremental and static learning methods over a set of public non-stationary synthetic datasets. Results obtained by our passive learning method are promising and encourage further research aimed at generalizing its applicability to other types of drifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, R.J.C., van der Aalst, WM., Žliobaite, I., Pechenizkiy, M.: Handling concept drift in process mining. In: International Conference on Advanced Information Systems Engineering, pp. 391–405. Springer (2011)

    Google Scholar 

  2. Dehghan, M., Beigy, H., ZareMoodi, P.: A novel concept drift detection method in data streams using ensemble classifiers. Intell. Data Anal. 20(6), 1329–1350 (2016)

    Article  Google Scholar 

  3. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for tracking concept drift in spam filtering. Knowl.-Based Syst. 18(4–5), 187–195 (2005)

    Article  Google Scholar 

  4. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  5. Dyer, K.B., Capo, R., Polikar, R.: Compose: a semisupervised learning framework for initially labeled nonstationary streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 12–26 (2014)

    Article  Google Scholar 

  6. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  7. Escovedo, T., Koshiyama, A., da Cruz, A.A., Vellasco, M.: DetectA: abrupt concept drift detection in non-stationary environments. Appl. Soft Comput. 62, 119–133 (2018)

    Article  Google Scholar 

  8. Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM SIGKDD Explor. Newsl. 14(2), 1–5 (2013)

    Article  Google Scholar 

  9. Frederickson, C., Gracie, T., Portley, S., Moore, M., Cahall, D., Polikar, R.: Adding adaptive intelligence to sensor systems with mass. In: IEEE Sensors Applications Symposium (SAS), pp. 1–6 (2017)

    Google Scholar 

  10. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, pp. 625–632 (1995)

    Google Scholar 

  11. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM Sigmod Rec. 34(2), 18–26 (2005)

    Article  Google Scholar 

  12. Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014)

    Article  Google Scholar 

  13. Gonçalves Jr., P.M., De Barros, R.S.M.: RCD: a recurring concept drift framework. Pattern Recogn. Lett. 34(9), 1018–1025 (2013)

    Article  Google Scholar 

  14. Hofer, V., Krempl, G.: Drift mining in data: a framework for addressing drift in classification. Comput. Stat. Data Anal. 57(1), 377–391 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel Distrib. Comput. 74(7), 2561–2573 (2014)

    Article  Google Scholar 

  16. Khan, L., Fan, W.: Tutorial: data stream mining and its applications. In: International Conference on Database Systems for Advanced Applications, pp. 328–329 (2012)

    Chapter  Google Scholar 

  17. Krempl, G.: The algorithm apt to classify in concurrence of latency and drift. In: International Symposium on Intelligent Data Analysis, pp. 222–233 (2011)

    Chapter  Google Scholar 

  18. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M.: Open challenges for data stream mining research. ACM SIGKDD Explor. News. 16(1), 1–10 (2014)

    Article  Google Scholar 

  19. Lobo, J.L., Del Ser, J., Bilbao, M.N., Perfecto, C., Salcedo-Sanz, S.: DRED: an evolutionary diversity generation method for concept drift adaptation in online learning environments. Appl. Soft Comput. 68, 693–709 (2018)

    Article  Google Scholar 

  20. Losing, V., Hammer, B., Wersing, H.: Tackling heterogeneous concept drift with the self-adjusting memory (sam). Knowl. Inf. Syst. 1–31 (2018)

    Google Scholar 

  21. Marrs, G.R., Hickey, R.J., Black, M.M.: The impact of latency on online classification learning with concept drift. International Conference on Knowledge Science, Engineering and Management, pp. 459–469. Springer (2010)

    Google Scholar 

  22. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

    Article  Google Scholar 

  23. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(5), 905–914 (2005)

    Article  Google Scholar 

  24. Souza, V.M., Silva, D.F., Gama, J., Batista, G.E.: Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: SIAM International Conference on Data Mining, pp. 873–881 (2015)

    Chapter  Google Scholar 

  25. Stanley, K.O.: Learning concept drift with a committee of decision trees. Report UT-AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin, USA (2003)

    Google Scholar 

  26. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382 (2001)

    Google Scholar 

  27. Tsai, C.W., Lai, C.F., Chao, H.C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 2(1), 21 (2015)

    Article  Google Scholar 

  28. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Dynamic integration of classifiers for handling concept drift. Inf. Fusion 9(1), 56–68 (2008)

    Article  Google Scholar 

  29. Umer, M., Frederickson, C., Polikar, R.: Learning under extreme verification latency quickly: fast compose. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  30. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  31. Xioufis, E.S., Spiliopoulou, M., Tsoumakas, G., Vlahavas, IP.: Dealing with concept drift and class imbalance in multi-label stream classification. In: International Joint Conferences on Artificial Intelligence, pp. 1583–1588 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Basque Government under the EMAITEK funding program. Jesus L. Lobo also thanks the funding support from the EU project Pacific Atlantic Network for Technical Higher Education and Research - PANTHER (grant number 2013-5659/004-001 EMA2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Arostegi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arostegi, M., Torre-Bastida, A.I., Lobo, J.L., Bilbao, M.N., Del Ser, J. (2018). Concept Tracking and Adaptation for Drifting Data Streams under Extreme Verification Latency. In: Del Ser, J., Osaba, E., Bilbao, M., Sanchez-Medina, J., Vecchio, M., Yang, XS. (eds) Intelligent Distributed Computing XII. IDC 2018. Studies in Computational Intelligence, vol 798. Springer, Cham. https://doi.org/10.1007/978-3-319-99626-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99626-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99625-7

  • Online ISBN: 978-3-319-99626-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics