Skip to main content

Equivalence of Limit Theorems for Sums of Random Variables and Renewal Processes

  • Chapter
  • First Online:
  • 558 Accesses

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 91))

Abstract

Many limit results are known for cumulative sums of independent identically distributed random variables and the corresponding renewal counting processes to hold under the same conditions. Despite the coincidence of conditions for both cases, the theories have been developed independently of each other and the methods are different. A general question is whether or not the whole theories of limit theorems for sums and renewal processes are equivalent. In this chapter, we consider the problem of the equivalence of certain asymptotic results, like the strong law of large numbers or the law of the iterated logarithm, for a sequence of sums of independent, identically distributed random variables and its corresponding renewal process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. de Acosta, A new proof of the Hartman–Wintner law of the iterated logarithm, Ann. Probab. 11 (1983), no. 2, 270–276.

    Article  MathSciNet  Google Scholar 

  2. G. Alsmeyer and A. Gut, Limit theorems for stopped functionals of Markov renewal processes, Ann. Inst. Math. Statist. 51 (1999), no. 2, 369–382.

    Article  MathSciNet  Google Scholar 

  3. Y.S. Chow and H. Robbins, On sums of independent random variables with infinite moments and “fair” games, Proc. Nat. Acad. Sci. U.S.A. 47(1961), no. 3, 330–335.

    Google Scholar 

  4. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York–London, 1981.

    Google Scholar 

  5. K.B. Erickson, Recurrence sets of normed random walk in R d, Ann. Probab. 4 (1976), no. 5, 802–828.

    Article  MathSciNet  Google Scholar 

  6. W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 (1946), no. 2, 257–262.

    Article  MathSciNet  Google Scholar 

  7. A. Gut, Stopped Random Walks. Limit Theorems and Applications, second edition, Springer, New York, 2009.

    Google Scholar 

  8. A. Gut, O. Klesov, and J. Steinebach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), no. 4, 381–394.

    Article  MathSciNet  Google Scholar 

  9. P. Hartman and A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), no. 1, 169–176.

    Article  MathSciNet  Google Scholar 

  10. C.C. Heyde, Some properties of metrics in a study on convergence to normality, Z. Wahrscheinlichkeitstheorie verw. Gebiete 11 (1969), no. 3, 181–192.

    Article  MathSciNet  Google Scholar 

  11. D.I. Iglehart and W. Whitt, The equivalence of functional central limit theorems for counting processes and associated partial sums, Ann. Math. Statist. 42 (1971), no. 4, 1372–1378.

    Article  MathSciNet  Google Scholar 

  12. H. Kesten, The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970), no. 4, 1173–1205.

    Article  MathSciNet  Google Scholar 

  13. O. Klesov, A. Rosalsky, and A. Volodin, On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables, Statist. Probab. Lett. 71 (2005), no. 2, 193–202.

    Article  MathSciNet  Google Scholar 

  14. A. Kolmogoroff, Sur la loi forte des grands nombres, C. R. Acad. Sci. Paris 191 (1930), 910–912.

    MATH  Google Scholar 

  15. J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fund. Math. 29 (1937), 60–90.

    MATH  Google Scholar 

  16. A.I. Martikainen, A converse to the law of the iterated logarithm for a random walk, Teor. Veroyatnost. i Primenen. 25 (1980), no. 2, 364–366 (Russian); English transl. in Theory Probab. Appl. 25 (1980), no. 2, 361–362.

    Google Scholar 

  17. V.V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, The Clarendon Press, Oxford University Press, New York, 1995.

    Google Scholar 

  18. W.E. Pruitt, General one-sided laws of the iterated logarithm, Ann. Probab. 9 (1981), no. 1, 1–48.

    Article  MathSciNet  Google Scholar 

  19. A. Rosalsky, On the converse to the iterated logarithm law, Sankhyā A42 (1980), no. 1–2, 103–108.

    MathSciNet  MATH  Google Scholar 

  20. F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), no. 2, 323–339.

    Article  MathSciNet  Google Scholar 

  21. W.F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.

    MATH  Google Scholar 

  22. V. Strassen, A converse to the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965/1966), no. 4, 265–268.

    Article  MathSciNet  Google Scholar 

  23. W. Vervaat, Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrscheinlichkeitstheorie verw. Gebiete 23 (1972), no. 4, 245–253.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buldygin, V.V., Indlekofer, KH., Klesov, O.I., Steinebach, J.G. (2018). Equivalence of Limit Theorems for Sums of Random Variables and Renewal Processes. In: Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Probability Theory and Stochastic Modelling, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-99537-3_1

Download citation

Publish with us

Policies and ethics