Skip to main content

Intraoperative Neurophysiology during Surgery for Spinal Cord Tumors

  • Chapter
  • First Online:
Spinal Cord Tumors

Abstract

Intraoperative neurophysiological monitoring might allow surgical tumor resection with functional guidance and real-time feed-back. The available methods can be divided in monitoring methods to continuously assess the functional integrity and mapping methods to identify eloquent tissue. In the following chapter we describe indication, set-up, interpretation and limitations of available neurophysiological methods in spinal cord tumor surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316. https://doi.org/10.1016/j.clinph.2013.07.025.

  2. Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Functional Neuroscience: Evoked Potentials and Related Techniques. ( Suppl. To Clinical NeurophysiologyVol 59) (Eds. C.Barber, S. Tsuji, S. Tobimatsu, T. Uozumi, N. Akamatsu, A.Eisen) 2006, pp.105-109.

    Google Scholar 

  3. Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F, Mallamace R, Buda G, Conti A, Quartarone A, Germano A. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus. 2016;41(2):E18. https://doi.org/10.3171/2016.5.focus16141.

    Article  PubMed  Google Scholar 

  4. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129–43.; discussion 1129-1143. https://doi.org/10.1227/01.neu.0000215948.97195.58.

    Article  PubMed  Google Scholar 

  5. Sala F, Tramontano V, Squintani G, Arcaro C, Tot E, Pinna G, Meglio M. Neurophysiology of complex spinal cord untethering. J Clin Neurophysiol. 2014;31(4):326–36. https://doi.org/10.1097/wnp.0000000000000115.

    Article  PubMed  Google Scholar 

  6. Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode: part I-surgical technique. Neurosurgery. 2009;65(3):511–28.; discussion 528-519. https://doi.org/10.1227/01.neu.0000350879.02128.80.

    Article  PubMed  Google Scholar 

  7. Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II: outcome analysis and preoperative profiling. Neurosurgery. 2010;66(2):253–72.; discussion 272-253. https://doi.org/10.1227/01.neu.0000363598.81101.7b.

    Article  PubMed  Google Scholar 

  8. Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS. Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst. 2013;29(9):1485–513. https://doi.org/10.1007/s00381-013-2187-4.

    Article  PubMed  Google Scholar 

  9. Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ. Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg. 2000;93(2 Suppl):183–93.

    CAS  PubMed  Google Scholar 

  10. Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1.

    Article  CAS  Google Scholar 

  11. Siller S, Szelenyi A, Herlitz L, Tonn JC, Zausinger S. Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. J Neurosurg Spine. 2017;26(4):483–93. https://doi.org/10.3171/2016.8.spine16595.

    Article  PubMed  Google Scholar 

  12. Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26(5):247–54.

    Article  CAS  Google Scholar 

  13. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64. https://doi.org/10.1016/j.clinph.2007.09.135.

    Article  PubMed  Google Scholar 

  14. Sala F, Kothbaurer K. Intraoperative neurophysiological monitoring during surgery for intramedullary spinal cord tumors. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Elsevier. 2008; pp. 632–650.

    Google Scholar 

  15. Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery. 1997;40(1):88–92. discussion 92-83

    CAS  PubMed  Google Scholar 

  16. Deletis V, Bueno De Camargo A. Interventional neurophysiological mapping during spinal cord procedures. Stereotact Funct Neurosurg. 2001;77(1–4):25–8.

    Article  CAS  Google Scholar 

  17. Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine. 2010;12(6):623–8. https://doi.org/10.3171/2010.1.spine09112.

    Article  PubMed  Google Scholar 

  18. Nair D, Kumaraswamy VM, Braver D, Kilbride RD, Borges LF, Simon MV. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74(4):437–46.; discussion 446. https://doi.org/10.1227/neu.0000000000000287.

    Article  PubMed  Google Scholar 

  19. Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51(5):1199–206. discussion 1206-1197

    Article  Google Scholar 

  20. Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Barber C, Tsuji S, Tobimatsu S, Uozumi T, Akamatsu N, Eisen A, editors. Functional neuroscience: evoked potentials and related techniques, (supplements to Clinical Neurophysiology, vol 59). Amsterdam: Elsevier; 2006. p. 105–9.

    Google Scholar 

  21. Gandhi R, Curtis CM, Cohen-Gadol AA. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22(2):205–10. https://doi.org/10.3171/2014.10.spine1474.

    Article  PubMed  Google Scholar 

  22. Duffau H, Lopes M, Sichez JP, Bitar A, Capelle L. A new device for electrical stimulation mapping of the brainstem and spinal cord. Minim Invasive Neurosurg. 2003;46(1):61–4. https://doi.org/10.1055/s-2003-37961.

    Article  CAS  PubMed  Google Scholar 

  23. Duffau H, Capelle L, Sichez J. Direct spinal cord electrical stimulations during surgery of intramedullary tumoral and vascular lesions. Stereotact Funct Neurosurg. 1998;71(4):180–9.

    Article  CAS  Google Scholar 

  24. Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A. Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine. 2017;27(2):161–8. https://doi.org/10.3171/2016.12.spine16985.

    Article  PubMed  Google Scholar 

  25. Deletis V, Kothbauer KF, Sala F, Seidel K. Letter to the Editor: Electrical activity in limb muscles after spinal cord stimulation is not specific for the corticospinal tract. J Neurosurg Spine. 2016;26(2):267–9. https://doi.org/10.3171/2016.6.spine16591.

    Article  PubMed  Google Scholar 

  26. Deletis V, Seidel K, Sala F, Raabe A, Chudy D, Beck J, Kothbauer KF. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. J Neurol Neurosurg Psychiatry. 2018; https://doi.org/10.1136/jnnp-2017-317172.

  27. Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20(2):122–8.

    Article  Google Scholar 

  28. Raynor BL, Bright JD, Lenke LG, Rahman RK, Bridwell KH, Riew KD, Buchowski JM, Luhmann SJ, Padberg AM. Significant change or loss of intraoperative monitoring data: a 25-year experience in 12,375 spinal surgeries. Spine. 2013;38(2):E101–8. https://doi.org/10.1097/BRS.0b013e31827aafb9.

    Article  PubMed  Google Scholar 

  29. Plata Bello J, Perez-Lorensu PJ, Roldan-Delgado H, Brage L, Rocha V, Hernandez-Hernandez V, Doniz A, Garcia-Marin V. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126(6):1264–70. https://doi.org/10.1016/j.clinph.2014.09.020.

    Article  PubMed  Google Scholar 

  30. Beck J, Ulrich CT, Fung C, Fichtner J, Seidel K, Fiechter M, Hsieh K, Murek M, Bervini D, Meier N, Mono ML, Mordasini P, Hewer E, Z'Graggen WJ, Gralla J, Raabe A. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology. 2016;87(12):1220–6. https://doi.org/10.1212/wnl.0000000000003122.

    Article  PubMed  Google Scholar 

  31. Ghadirpour R, Nasi D, Iaccarino C, Giraldi D, Sabadini R, Motti L, Sala F, Servadei F. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not? Clin Neurol Neurosurg. 2015;130:140–9. https://doi.org/10.1016/j.clineuro.2015.01.007.

    Article  PubMed  Google Scholar 

  32. Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H. Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery. 1992;30(1):72–5.

    Article  CAS  Google Scholar 

  33. Wostrack M, Shiban E, Obermueller T, Gempt J, Meyer B, Ringel F. Conus medullaris and cauda equina tumors: clinical presentation, prognosis, and outcome after surgical treatment: clinical article. J Neurosurg Spine. 2014;20(3):335–43. https://doi.org/10.3171/2013.12.spine13668.

    Article  PubMed  Google Scholar 

  34. Kothbauer KF, Deletis V. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst. 2010;26(2):247–53. https://doi.org/10.1007/s00381-009-1020-6.

    Article  PubMed  Google Scholar 

  35. Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26(4):473–90. https://doi.org/10.1007/s00381-009-1081-6.

    Article  PubMed  Google Scholar 

  36. Sala F, Barone G, Tramontano V, Gallo P, Ghimenton C. Retained medullary cord confirmed by intraoperative neurophysiological mapping. Childs Nerv Syst. 2014;30(7):1287–91. https://doi.org/10.1007/s00381-014-2372-0.

    Article  PubMed  Google Scholar 

  37. Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.

    CAS  PubMed  Google Scholar 

  38. Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol. 2001;112(3):445–52.

    Article  CAS  Google Scholar 

  39. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  Google Scholar 

  40. Kothbauer KF. The Interpretation of Muscle Motor Evoked Potentials for Spinal Cord Monitoring. J Clin Neurophysiol. 2017;34(1):32–7. https://doi.org/10.1097/wnp.0000000000000314.

    Article  PubMed  Google Scholar 

  41. Deletis V. Intraoperative neurophysiological monitoring. In: McLone DG, Marlin AE (eds) Pediatric neurosurgery: surgery of the developing nervous system. 4th edn. W.B.Saunders Philadelphia; 2001; pp 1204–1213.

    Google Scholar 

  42. Macdonald DB, Al Zayed Z, Al Saddigi A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J. 2007;16(Suppl 2):S171–87. https://doi.org/10.1007/s00586-007-0426-7.

    Article  PubMed  Google Scholar 

  43. Shils JL, Arle JE. Intraoperative neurophysiologic methods for spinal cord stimulator placement under general anesthesia. Neuromodulation. 2012;15(6):560–71.; discussion 571-562. https://doi.org/10.1111/j.1525-1403.2012.00460.x.

    Article  PubMed  Google Scholar 

  44. Huang JC, Deletis V, Vodusek DB, Abbott R. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41(2):411–5.

    Article  CAS  Google Scholar 

  45. Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 2014;31(4):313–22. https://doi.org/10.1097/wnp.0000000000000054.

    Article  Google Scholar 

  46. Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol. 2001;112(5):879–83.

    Article  CAS  Google Scholar 

  47. Kothbauer K, Schmid UD, Seiler RW, Eisner W. Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery. 1994;34(4):702–7. discussion 707

    CAS  PubMed  Google Scholar 

  48. Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29(9):1611–24. https://doi.org/10.1007/s00381-013-2188-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deletis, V., Seidel, K. (2019). Intraoperative Neurophysiology during Surgery for Spinal Cord Tumors. In: Arnautović, K.I., Gokaslan, Z.L. (eds) Spinal Cord Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-99438-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99438-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99437-6

  • Online ISBN: 978-3-319-99438-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics