Skip to main content

An Improved Weighted ELM with Hierarchical Feature Representation for Imbalanced Biomedical Datasets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11061))

Abstract

In medical intelligent diagnosis, most of the real-world datasets have the class-imbalance problem and some strong correlation features. In this paper, a novel classification model with hierarchical feature representation is proposed to tackle small and imbalanced biomedicine datasets. The main idea of the proposed method is to integrate extreme learning machine-autoencoder (ELM-AE) into the weighted ELM (W-ELM) model. ELM-AE with norm optimization is utilized to extract more effective information from raw data, thereby forming a hierarchical and compact feature representation. Afterwards, random projections of learned feature results view as inputs of the W-ELM. An adaptive weighting scheme is designed to reduce the misclassified rate of the minority class by assigning a larger weight to minority samples. The classification performance of the proposed method is evaluated on two biomedical datasets from the UCI repository. The experimental results show that the proposed method cannot only effectively solve the class-imbalanced problem with small biomedical datasets, but also obtain a higher and more stable performance than other state-of-the-art classification methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  2. Rahman, M.M., Davis, D.N.: Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 3(2), 224–228 (2013)

    Article  Google Scholar 

  3. Krawczyk, B., Galar, M., Jelen, Ł., Herrera, F.: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38, 714–726 (2016)

    Article  Google Scholar 

  4. Ali, S., Majid, A., Javed, S.G., et al.: Can-CSC-GBE: developing cost-sensitive classifier with gentleboost ensemble for breast cancer classification using protein amino acids and imbalanced data. Comput. Biol. Med. 73, 38–46 (2016)

    Article  Google Scholar 

  5. Ren, F., Cao, P., Li, W., et al.: Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm. Comput. Med. Imaging Graph. 55, 54–67 (2017)

    Article  Google Scholar 

  6. Yap, B.W., Rani, K.A., Rahman, H.A.A., Fong, S., Khairudin, Z., Abdullah, N.N.: An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 13–22. Springer, Singapore (2014). https://doi.org/10.1007/978-981-4585-18-7_2

    Chapter  Google Scholar 

  7. Gong, C.L., Gu, L.X.: A novel SMOTE-based classification approach to online data imbalance problem. Math. Probl. Eng., 1–14 (2016)

    Google Scholar 

  8. Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning. Neurocomputing 101, 229–242 (2013)

    Article  Google Scholar 

  9. Sani, S., Massie, S., Wiratunga, N., Cooper, K.: Learning deep and shallow features for human activity recognition. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp. 469–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3_40

    Chapter  Google Scholar 

  10. Huang, G., Huang, G.B., Song, S., et al.: Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015)

    Article  Google Scholar 

  11. Tang, J.X., Deng, C.W., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  12. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  13. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets

Download references

Acknowledgments

This work is supported by the Science & Technology Development Program of Jilin Province, China (Nos. 20150307030GX, 2015Y059 and 20160204048GX), and by the International Science and Technology Cooperation Program of China under Grant (No. 2015DFA11180), National Key Research and Development Program of China (No. 2017YFC0108303), and Science Foundation for Young Scholars of Changchun University of Science and Technology (No. XQNJJ-2016-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiashi Zhao or Huamin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Zhao, J., Yang, H., Jiang, Z., Shi, W. (2018). An Improved Weighted ELM with Hierarchical Feature Representation for Imbalanced Biomedical Datasets. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics