Skip to main content

W-Shaped Selection for Light Field Super-Resolution

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2018)

Abstract

Commercial Light-Field cameras provide spatial and angular information, but its limited resolution becomes an important problem in practical use. Different from the conventional images, Light-Field images contain more information of different views that can be used for super-resolution and it makes super-resolution more credible. In this paper, we propose a interpolation based method for Light-Field image super-resolution by taking advantage of the epipolar plane image (EPI) to transfer angular information into spatial information. Firstly, we propose a color recovery framework for undetermined pixels. This framework contains three parts: we estimate the similar-color-diagonal (SCD) for known pixels, we construct a set of filters corresponding to different SCD to generate colors in order to provide a color selection set for undetermined pixel and we propose a W-shaped operator to select a more credible color for undetermined pixel. Finally we use this framework to interpolate EPI and the interpolated EPIs are used to reconstruct a high-resolution image. Experimental results demonstrate that the proposed method outperforms the state-of-art methods for Light-Field spatial super-resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision, pp. 3–20 (1991)

    Google Scholar 

  2. Bolles, R.C., Baker, H.H., Marimont, D.H.: Epipolar-plane image analysis: an approach to determining structure from motion. Int. J. Comput. Vis. 1(1), 7–55 (1987)

    Article  Google Scholar 

  3. Chen, C., Lin, H., Yu, Z., Kang, S.B., Yu, J.: Light field stereo matching using bilateral statistics of surface cameras (10636919), pp. 1518–1525 (2014)

    Google Scholar 

  4. Cho, D., Lee, M., Kim, S., Tai, Y.W.: Modeling the calibration pipeline of the lytro camera for high quality light-field image reconstruction. In: IEEE International Conference on Computer Vision, pp. 3280–3287 (2014)

    Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2

    Chapter  Google Scholar 

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  8. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Computer Vision and Pattern Recognition, pp. 105–114 (2017)

    Google Scholar 

  10. Mitra, K., Veeraraghavan, A.: Light field denoising, light field superresolution and stereo camera based refocussing using a GMM light field patch prior, pp. 22–28 (2012)

    Google Scholar 

  11. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, pp. 1874–1883 (2016)

    Google Scholar 

  12. Tao, M.W., Su, J.C., Wang, T.C., Malik, J., Ramamoorthi, R.: Depth estimation and specular removal for glossy surfaces using point and line consistency with light-field cameras. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1155–1169 (2016)

    Article  Google Scholar 

  13. Wanner, S., Goldluecke, B.: Spatial and angular variational super-resolution of 4D light fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 608–621. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_44

    Chapter  Google Scholar 

  14. Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014)

    Article  Google Scholar 

  15. Yoon, Y., Jeon, H., Yoo, D., Lee, J., Kweon, I.S.: Learning a deep convolutional network for light-field image super-resolution, pp. 57–65 (2015)

    Google Scholar 

  16. Zhang, S., Sheng, H., Yang, D., Zhang, J., Xiong, Z.: Micro-lens-based matching for scene recovery in lenslet cameras. IEEE Trans. Image Process. PP(99), 1 (2017). A Publication of the IEEE Signal Processing Society

    Google Scholar 

  17. Zhang, S., Sheng, H., Li, C., Zhang, J., Xiong, Z.: Robust depth estimation for light field via spinning parallelogram operator. Comput. Vis. Image Underst. 145(145), 148–159 (2016)

    Article  Google Scholar 

  18. Zhang, Z., Liu, Y., Dai, Q.: Light field from micro-baseline image pair. In: Computer Vision and Pattern Recognition, pp. 3800–3809 (2015)

    Google Scholar 

  19. Zhou, L.Y., Cai-Xia, S.U., Cao, Y.F.: Image super-resolution via sparse representation. Comput. Eng. Des. (2016)

    Google Scholar 

Download references

Acknowledgement

This study is partially supported by the National Key R&D Program of China (No. 2018YFB0505500), the National Natural Science Foundation of China (No. 61635002), the Macao Science and Technology Development Fund (No. 138/2 016/A3), the Program of Introducing Talents of Discipline to Universities and the Open Fund of the State Key Laboratory of Software Development Environment under grant SKLSDE-2017ZX-09, the Project of Experimental Verification of the Basic Commonness and Key Technical Standards of the Industrial Internet network architecture. Thank you for the support from HAWKEYE Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, B., Sheng, H., Zhang, S., Yang, D., Chen, N., Ke, W. (2018). W-Shaped Selection for Light Field Super-Resolution. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics