Skip to main content

Ionosphere Space Weather and Radio Propagation

  • Chapter
  • First Online:
Ionospheric Space Weather

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 785 Accesses

Abstract

The effects of ionospheric weather on RF and GNSS systems are summarized in terms of the resulting consequences for radio communications, systems supporting space-based navigation and positioning, and surveillance, together with a description of the monitoring facilities and mapping techniques available for prediction, nowcasting, forecasting, post-event analysis, along with final operational tools, products, and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Barclay L (2002) Ionospheric effects and communication systems performance. Proc IES 2002:1–10

    Google Scholar 

  • Basler RP, Bentley PB, Price RT et al (1988) Ionospheric distortion of HF signals. Radio Sci 23:569–579

    Article  Google Scholar 

  • Ben A, Witvliet R (2017) Communication via Near Vertical Incidence Skywave propagation: an overview. Telecommun Syst. https://doi.org/10.1007/s11235-017-0287-2

    Article  Google Scholar 

  • Beniguel Y, Hamel P (2011) A global ionosphere scintillation propagation model for equatorial regions. J Space Weather Space Clim 1:A04. https://doi.org/10.1051/swsc/2011004

    Article  Google Scholar 

  • Bradley PA (1996) HF applications and prediction. In: Hall MPM, Barclay LW, Hewitt MT (eds) Propagation of radiowaves. IEE, London, pp 354–371

    Google Scholar 

  • Broms M, Lundborg B (1994) Results from Swedish oblique soundings campaigns. Ann Geofís XXXVII:145–152

    Google Scholar 

  • Cander LR (2008) Ionospheric research and space weather services. J Atmos Solar Terr Phys 70:1870–1878

    Article  Google Scholar 

  • CCIR Atlas of Ionospheric Characteristics (1967) Comité Consultatif International des Radiocommunications, Report 340-4. International Telecommunications Union, Geneva

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83:191–198

    Article  Google Scholar 

  • Erdogan E, Michael Schmidt M, Florian Seitz F et al (2017) Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter. Ann Geophys 35:263–277. https://doi.org/10.5194/angeo-35-263-2017

    Article  Google Scholar 

  • Goodman JM (2005) Operational communication systems and relationships to the ionosphere and space weather. Adv Space Res 36:2241–2252

    Article  Google Scholar 

  • Hanbaba R (1999) Improved quality of service in ionospheric telecommunication systems planning and operation, COST Action 251 Final Report. Space Research Centre Printing Office, Warsaw

    Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83(3–4):263–275. https://doi.org/10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A et al (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy 91(12):1405–1414. https://doi.org/10.1007/s00190-017-1032-z

    Article  Google Scholar 

  • Ippolito LJ Jr (1989) Propagation effects handbook for satellite systems design—A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design. NASA Reference Publication 1082(04), Washington DC

    Google Scholar 

  • ITU-R Rec.P.533-5 (1994) HF propagation prediction method. International Telecommunication Union, Geneva

    Google Scholar 

  • ITU-R Rec.P.534-4 (1999) Method for calculating sporadic-E field strength. International Telecommunications Union, Geneva

    Google Scholar 

  • ITU-R Rec. P.531-11 (2012) Ionospheric propagation data and prediction methods required for the design of satellite services and systems. International Telecommunications Union, Geneva

    Google Scholar 

  • Johnson EE, Desourdis RI, Earle GD et al (1997) Advanced high-frequency radio communications. Artech House, Boston and London

    Google Scholar 

  • Kintner PM Jr (2008) A beginner’s guide to space weather and GPS. Cornell University Lecture Notes 12

    Google Scholar 

  • Lundborg B, Broms M, Derblom H (1995) Oblique sounding of an auroral ionospheric HF channel. J Atmos Terr Phys 57:51–63

    Article  Google Scholar 

  • Marabashi K (1995) Perspectives of present and future space weather forecasts. J Atmos Terr Phys 57:1385–1396

    Article  Google Scholar 

  • Muslim B (2002) Penentuan MUF menggunakan model sederhana ionosfer tegional Indonesia. Kontribusi Fisika Indonesia 13(2):94–97

    Google Scholar 

  • Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Solar Terr Phys. https://doi.org/10.1016/j.jastp.2008.01.015

    Article  Google Scholar 

  • Orus R, Cander LR, Hernandez-Pajares M (2007) Testing regional vTEC maps over Europe during the 17–21 January 2005 sudden space weather event. Radio Sci 42:RS3004. https://doi.org/10.1029/2006rs003515

    Article  Google Scholar 

  • Perna L, Pezzopane M, Pietrella M et al (2017) An updating of the SIRM model. Adv Space Res 60:1249–1260. https://doi.org/10.1016/j.asr.2017.06.029

    Article  Google Scholar 

  • Pezzopane M, Scotto C (2007) The automatic scaling of critical frequency foF2 and MUF(3000)F2: a comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Sci. https://doi.org/10.1029/2006rs003581

    Article  Google Scholar 

  • Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27:35–40

    Article  Google Scholar 

  • Rawer K (1993) Wave propagation in the ionosphere. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Reinisch BW, Galkin IA (2011) Global Ionospheric Radio Observatory (GIRO). Earth Plan Sci 63:377–381

    Google Scholar 

  • Ritchie SE, Honary F (2009) Storm sudden commencement and its effect on high-latitude HF communication links. Space Weather. https://doi.org/10.1029/2008sw000461

    Article  Google Scholar 

  • Rush CM, Gibbs J (1973) Predicting the day-to-day variability of the mid-latitude ionosphere for application to HF propagation predictions. AFCRL Technical Rep. TR-73-0335, Alexsandria

    Google Scholar 

  • Samardjiev T, Bradley PA, Cander LR et al (1993) Ionospheric mapping by computer contouring techniques. Electron Lett 29:1794–1795

    Article  Google Scholar 

  • Satellite Navigation & Space Weather: Understanding the Vulnerability & Building Resilience Report of a Policy Workshop Developed (2011) American Meteorological Society Policy Program

    Google Scholar 

  • Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report (2008) National Research Council, The National Academies Press, Washington DC. https://doi.org/10.17226/12507

  • Verhulst TGW, Altadill D, Mielich J et al (2017) Vertical and oblique HF sounding with a network of synchronized ionosondes. Adv Space Res 60(8):1797–1806. https://doi.org/10.1016/j.asr.2017.06.033

    Article  Google Scholar 

  • Zolesi B, LR Cander, De Franceschi G (1993) Simplified Ionospheric Regional Model (SIRM) for telecommunication applications. Radio Sci 28:603–612

    Article  Google Scholar 

  • Zolesi B, LR Cander, De Franceschi G (1996) On the potential applicability of SIRM (Simplified Ionospheric Regional Model) to different mid-latitude areas. Radio Sci 31:547–552

    Article  Google Scholar 

  • Zolesi B, Belehaki A, Tsagouri I et al (2004) Real-time updating of the simplified ionospheric regional model for operational applications. Radio Sci 39:RS2011.https://doi.org/10.1029/2003rs002936

    Article  Google Scholar 

Relevant Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana R. Cander .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cander, L.R. (2019). Ionosphere Space Weather and Radio Propagation. In: Ionospheric Space Weather. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-99331-7_8

Download citation

Publish with us

Policies and ethics