Skip to main content

Middle Fossa Approach to Vestibular Schwannomas

  • Chapter
  • First Online:
Vestibular Schwannoma Surgery

Abstract

Since the technical description by William House in 1961, the middle cranial fossa approach to the internal acoustic canal has become one of the quintessential surgical approaches for accessing the seventh and eighth cranial nerves and the upper cerebellopontine angle. In this chapter the MCF approach comprises an extradural, subtemporal exposure and removal of a portion of the superior surface of the temporal bone to expose the posterior cranial fossa. House and Doyle performed the first vestibular schwannoma removal via the MCF approach in 1961. The MCF approach and its extensions can be used to treat a wide variety of lesions including schwannomas of the 5th through 8th cranial nerves, meningiomas of the IAC, CPA, and petroclival region, and cholesterol granulomas and cholesteatomas, petrous apex infections, chondrosarcomas of foremen lacerum, vascular lesions of the ventral skull base, and nerve decompressions for inflammatory neuropathies. When considering patient’s historical and exam findings, it is important to note that patients who are considered good surgical candidates for an MCF approach will have small to medium-sized tumors, typically <1.5 cm in length and thus, symptoms and findings are often subtle. There are several anatomic considerations unique to the MCF approach that warrant special consideration: the lateral skull and temporal bone including the temporal and infratemporal fossa contents, location and pathway of the frontal branch of the facial nerve, the relationships of the middle cranial fossa floor, otic capsule and IAC relationships, and strategies for finding the IAC. The 3-dimensional boundaries of the anterior petrous apex are: the bony skull base superiorly, the carotid artery laterally, the posterior fossa dura medially, the IAC dura posteriorly and the inferior petrosal sinus inferiorly. Microsurgical removal via the MCF approach is the preferred management strategy patients preferring surgical treatment, who have lesions that do not impact the brainstem and who have preserved hearing of a least AAO-HNS CHE Class B or WRS II. If the preoperative hearing is at the AAO-HNS CHE class A or WRS I limits or better, we quote a 70% chance to preserve at least a WRS I postoperative hearing level if the tumor is 10 mm in length or smaller, which includes the IAC and CPA portions. The preoperative evaluation consists of diagnostic testing to establish the identity and location of the lesion, pure-tone and speech audiometry to determine residual hearing ability and classification, auditory evoked electrical potential testing if intraoperative evoked potential monitoring is to be utilized, and the testing to ensure that the patient is an appropriate surgical candidate. There are three main methods for identification of the internal acoustic canal: (1) identification of the geniculate ganglion and then labyrinthine segment of the facial nerve (House method), (2) identification of the lumen of the SSCC (Fisch method), and (3) identification of the anterior and medial surface of the IAC dura by opening the anterior petrous apex (Garcia-Ibanez method). The main downside to this approach is that the facial nerve is at risk for injury as exposure of the ganglion does not provide any exposure to the IAC and only serves as a landmark for which to base further dissection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. House WF. Surgical exposure of the internal auditory canal and its contents through the middle, cranial fossa. Laryngoscope. 1961;71:1363–85.

    Article  CAS  PubMed  Google Scholar 

  2. Monfared A, Mudry A, Jackler R. The history of middle cranial fossa approach to the cerebellopontine angle. Otol Neurotol. 2010;31(4):691–6.

    PubMed  Google Scholar 

  3. Hartley F. Intracranial neurectomy of the second and third divisions of the fifth nerve: a new method. N Y Med J. 1892;55:317–9.

    Google Scholar 

  4. Horsley V. Remarks on the various surgical procedures devised for the relief or cure of trigeminal neuralgia (Tic Douloureux). Br Med J. 1891;2(1613):1139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krause F. Resection des Trigeminus innerhalb der Schaidelhohle. Verh Dtsch Ges Chir. 1892;21:199–210.

    Google Scholar 

  6. Cushing H. Landmark article April 28, 1900: A method of total extirpation of the Gasserian ganglion for trigeminal neuralgia. By a route through the temporal fossa and beneath the middle meningeal artery. By Harvey Cushing. JAMA. 1983;250(4):519–28.

    Article  CAS  PubMed  Google Scholar 

  7. Rosegay H. The Krause operations. J Neurosurg. 1992;76(6):1032–6.

    Article  CAS  PubMed  Google Scholar 

  8. Parry RH. A case of tinnitus and vertigo treated by division of the auditory nerve. J Laryngol Otol. 1904;105(12):1099–100.

    Article  Google Scholar 

  9. Putnam TJ. Treatment of recurrent vertigo (Ménière’s syndrome) by subtemporal destruction of the labyrinth. Arch Otolaryngol. 1938;27(2):161–8.

    Article  Google Scholar 

  10. Gardner WJ, Stowell A, Dutlinger R. Resection of the greater superficial petrosal nerve in the treatment of unilateral headache. J Neurosurg. 1947;4(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  11. Kurze T, Doyle JB Jr. Extradural intracranial (middle fossa) approach to the internal auditory canal. J Neurosurg. 1962;19:1033–7.

    Article  CAS  PubMed  Google Scholar 

  12. Brackmann DE, House JR 3rd, Hitselberger WE. Technical modifications to the middle fossa craniotomy approach in removal of acoustic neuromas. Am J Otol. 1994;15(5):614–9.

    CAS  PubMed  Google Scholar 

  13. Fisch U. Transtemporal surgery of the internal auditory canal. Report of 92 cases, technique, indications and results. Adv Otorhinolaryngol. 1970;17:203–40.

    CAS  PubMed  Google Scholar 

  14. Gantz BJ, et al. Middle cranial fossa acoustic neuroma excision: results and complications. Ann Otol Rhinol Laryngol. 1986;95(5 Pt 1):454–9.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer TA, et al. Small acoustic neuromas: surgical outcomes versus observation or radiation. Otol Neurotol. 2006;27(3):380–92.

    Article  PubMed  Google Scholar 

  16. Garcia-Ibanez E, Garcia-Ibanez JL. Middle fossa vestibular neurectomy: a report of 373 cases. Otolaryngol Head Neck Surg. 1980;88(4):486–90.

    Article  CAS  PubMed  Google Scholar 

  17. Bochenek Z, Kukwa A. An extended approach through the middle cranial fossa to the internal auditory meatus and the cerebello-pontine angle. Acta Otolaryngol. 1975;80(5–6):410–4.

    Article  CAS  PubMed  Google Scholar 

  18. Kanzaki J, et al. A modified extended middle cranial fossa approach for acoustic tumors. Arch Otorhinolaryngol. 1977;217(1):119–21.

    Article  CAS  PubMed  Google Scholar 

  19. Kanzaki J, Shiobara R, Toya S. Classification of the extended middle cranial fossa approach. Acta Otolaryngol Suppl. 1991;487:6–16.

    Article  CAS  PubMed  Google Scholar 

  20. Wigand ME, Haid T, Berg M. The enlarged middle cranial fossa approach for surgery of the temporal bone and of the cerebellopontine angle. Arch Otorhinolaryngol. 1989;246(5):299–302.

    Article  CAS  PubMed  Google Scholar 

  21. Kawase T, et al. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg. 1985;63(6):857–61.

    Article  CAS  PubMed  Google Scholar 

  22. Blevins NH, et al. Combined transpetrosal-subtemporal craniotomy for clival tumors with extension into the posterior fossa. Laryngoscope. 1995;105(9 Pt 1):975–82.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Mefty O, Fox JL, Smith RR. Petrosal approach for petroclival meningiomas. Neurosurgery. 1988;22(3):510–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sekhar LN, et al. Meningiomas involving the clivus: a six-year experience with 41 patients. Neurosurgery. 1990:27(5):764–81. discussion 781.

    Article  CAS  PubMed  Google Scholar 

  25. Erkmen K, Pravdenkova S, Al-Mefty O. Surgical management of petroclival meningiomas: factors determining the choice of approach. Neurosurg Focus. 2005;19(2):E7.

    PubMed  Google Scholar 

  26. Zentner J, et al. Petroclival meningiomas: is radical resection always the best option? J Neurol Neurosurg Psychiatry. 1997;62(4):341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spetzler RF, Daspit CP, Pappas CT. The combined supra- and infratentorial approach for lesions of the petrous and clival regions: experience with 46 cases. J Neurosurg. 1992;76(4):588–99.

    Article  CAS  PubMed  Google Scholar 

  28. Megerian CA, et al. The subtemporal-transpetrous approach for excision of petroclival tumors. Am J Otol. 1996;17(5):773–9.

    CAS  PubMed  Google Scholar 

  29. Danner C, Cueva RA. Extended middle fossa approach to the petroclival junction and anterior cerebellopontine angle. Otol Neurotol. 2004;25(5):762–8.

    Article  PubMed  Google Scholar 

  30. Roche JP, et al. Treatment of lateral skull base and posterior cranial fossa lesions utilizing the extended middle cranial fossa approach. Otol Neurotol. 2017;38(5):742–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Friedman RA, et al. Anterior petrosectomy approach to infraclinoidal basilar artery aneurysms: the emerging role of the neuro-otologist in multidisciplinary management of basilar artery aneurysms. Laryngoscope. 1997;107(7):977–83.

    Article  CAS  PubMed  Google Scholar 

  32. Shen T, et al. The evolution of surgical approaches for posterior fossa meningiomas. Otol Neurotol. 2004;25(3):394–7.

    Article  PubMed  Google Scholar 

  33. Fisch U. Surgery for Bell’s palsy. Arch Otolaryngol. 1981;107(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  34. Fisch U, Esslen E. Total intratemporal exposure of the facial nerve. Pathologic findings in Bell's palsy. Arch Otolaryngol. 1972;95(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  35. Gantz BJ, et al. Surgical management of Bell’s palsy. Laryngoscope. 1999;109(8):1177–88.

    Article  CAS  PubMed  Google Scholar 

  36. Selesnick SH, Jackler RK, Pitts LW. The changing clinical presentation of acoustic tumors in the MRI era. Laryngoscope. 1993;103(4 Pt 1):431–6.

    Article  CAS  PubMed  Google Scholar 

  37. Roehm PC, Gantz BJ. Management of acoustic neuromas in patients 65 years or older. Otol Neurotol. 2007;28(5):708–14.

    Article  PubMed  Google Scholar 

  38. Lustig LR, et al. Acoustic neuromas presenting with normal or symmetrical hearing: factors associated with diagnosis and outcome. Am J Otol. 1998;19(2):212–8.

    CAS  PubMed  Google Scholar 

  39. Anderson TD, et al. Prevalence of unsuspected acoustic neuroma found by magnetic resonance imaging. Otolaryngol Head Neck Surg. 2000;122(5):643–6.

    Article  CAS  PubMed  Google Scholar 

  40. Mirz F, et al. Incidence and growth pattern of vestibular schwannomas in a Danish county, 1977-98. Acta Otolaryngol Suppl. 2000;543:30–3.

    CAS  PubMed  Google Scholar 

  41. Stangerup SE, et al. Change in hearing during ‘wait and scan’ management of patients with vestibular schwannoma. J Laryngol Otol. 2008;122(7):673–81.

    Article  PubMed  Google Scholar 

  42. Lin D, et al. The prevalence of “incidental” acoustic neuroma. Arch Otolaryngol Head Neck Surg. 2005;131(3):241–4.

    Article  PubMed  Google Scholar 

  43. Brackmann DE, Barrs DM. Assessing recovery of facial function following acoustic neuroma surgery. Otolaryngol Head Neck Surg. 1984;92(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  44. House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146–7.

    Article  CAS  PubMed  Google Scholar 

  45. Roche J, et al. Ultra long-term audiometric outcomes in the treatment of vestibular schwannoma with the middle cranial fossa approach. Otol Neurotol. 2018;39(2):e151–57.

    Article  Google Scholar 

  46. Brackmann DE, et al. Prognostic factors for hearing preservation in vestibular schwannoma surgery. Am J Otol. 2000;21(3):417–24.

    Article  CAS  PubMed  Google Scholar 

  47. Shelton C, et al. Acoustic tumor surgery. Prognostic factors in hearing conversation. Arch Otolaryngol Head Neck Surg. 1989;115(10):1213–6.

    Article  CAS  PubMed  Google Scholar 

  48. Slattery WH 3rd, Brackmann DE, Hitselberger W. Middle fossa approach for hearing preservation with acoustic neuromas. Am J Otol. 1997;18(5):596–601.

    PubMed  Google Scholar 

  49. Dornhoffer JL, Helms J, Hoehmann DH. Hearing preservation in acoustic tumor surgery: results and prognostic factors. Laryngoscope. 1995;105(2):184–7.

    Article  CAS  PubMed  Google Scholar 

  50. Abele TA, et al. Diagnostic accuracy of screening MR imaging using unenhanced axial CISS and coronal T2WI for detection of small internal auditory canal lesions. AJNR Am J Neuroradiol. 2014;35(12):2366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goddard JC, Schwartz MS, Friedman RA. Fundal fluid as a predictor of hearing preservation in the middle cranial fossa approach for vestibular schwannoma. Otol Neurotol. 2010;31(7):1128–34.

    Article  PubMed  Google Scholar 

  52. Davis RA, et al. Surgical anatomy of the facial nerve and parotid gland based upon a study of 350 cervicofacial halves. Surg Gynecol Obstet. 1956;102(4):385–412.

    CAS  PubMed  Google Scholar 

  53. Weber PC, Gantz BJ. Results and complications from acoustic neuroma excision via middle cranial fossa approach. Am J Otol. 1996;17(4):669–75.

    CAS  PubMed  Google Scholar 

  54. Cueva RA, Mastrodimos B. Approach design and closure techniques to minimize cerebrospinal fluid leak after cerebellopontine angle tumor surgery. Otol Neurotol. 2005;26(6):1176–81.

    Article  PubMed  Google Scholar 

  55. Jackler RK, Gladstone HB. Locating the internal auditory canal during the middle fossa approach: an alternative technique. Skull Base Surg. 1995;5(2):63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. King TT, Morrison AW. Primary facial nerve tumors within the skull. J Neurosurg. 1990;72(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz MS, et al. Translabyrinthine microsurgical resection of small vestibular schwannomas. J Neurosurg. 2018;129(1):128–36.

    Google Scholar 

  58. McMenomey SO, et al. Facial nerve neuromas presenting as acoustic tumors. Am J Otol. 1994;15(3):307–12.

    CAS  PubMed  Google Scholar 

  59. Mowry S, Hansen M, Gantz B. Surgical management of internal auditory canal and cerebellopontine angle facial nerve schwannoma. Otol Neurotol. 2012;33(6):1071–6.

    PubMed  Google Scholar 

  60. McRackan TR, et al. Facial nerve outcomes in facial nerve schwannomas. Otol Neurotol. 2012;33(1):78–82.

    Article  PubMed  Google Scholar 

  61. Wilkinson EP, et al. Evolution in the management of facial nerve schwannoma. Laryngoscope. 2011;121(10):2065–74.

    Article  PubMed  Google Scholar 

  62. Semaan MT, Slattery WH, Brackmann DE. Geniculate ganglion hemangiomas: clinical results and long-term follow-up. Otol Neurotol. 2010;31(4):665–70.

    PubMed  Google Scholar 

  63. Angeli SI, Brackmann DE. Is surgical excision of facial nerve schwannomas always indicated? Otolaryngol Head Neck Surg. 1997;117(6):S144–7.

    Article  CAS  PubMed  Google Scholar 

  64. Channer GA, et al. Management outcomes of facial nerve tumors: comparative outcomes with observation, CyberKnife, and surgical management. Otolaryngol Head Neck Surg. 2012;147(3):525–30.

    Article  PubMed  Google Scholar 

  65. Lahlou G, et al. Geniculate ganglion tumors: clinical presentation and surgical results. Otolaryngol Head Neck Surg. 2016;155(5):850–5.

    Article  PubMed  Google Scholar 

  66. Lee WJ, Isaacson JE. Postoperative imaging and follow-up of vestibular schwannomas. Otol Neurotol. 2005;26(1):102–4.

    Article  PubMed  Google Scholar 

  67. Carlson ML, et al. Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope. 2012;122(2):378–88.

    Article  PubMed  Google Scholar 

  68. Miller ME, et al. Long-term MRI surveillance after microsurgery for vestibular schwannoma. Laryngoscope. 2017;127(9):2132–8.

    Article  PubMed  Google Scholar 

  69. Arts HA, et al. Hearing preservation and facial nerve outcomes in vestibular schwannoma surgery: results using the middle cranial fossa approach. Otol Neurotol. 2006;27(2):234–41.

    Article  PubMed  Google Scholar 

  70. Wang AC, et al. Durability of hearing preservation after microsurgical treatment of vestibular schwannoma using the middle cranial fossa approach. J Neurosurg. 2013;119(1):131–8.

    Article  PubMed  Google Scholar 

  71. Kutz JW Jr, et al. Hearing preservation using the middle fossa approach for the treatment of vestibular schwannoma. Neurosurgery. 2012;70(2): 334–40. discussion 340–1.

    Article  PubMed  Google Scholar 

  72. Gjuric M., Wigand ME, Wolf SR. Enlarged middle fossa vestibular schwannoma surgery: experience with 735 cases. Otol Neurotol. 2001; 22(2):223–30. discussion 230–1.

    Google Scholar 

  73. Holsinger FC, Coker NJ, Jenkins HA. Hearing preservation in conservation surgery for vestibular schwannoma. Am J Otol. 2000;21(5):695–700.

    CAS  PubMed  Google Scholar 

  74. Kumon Y, et al. Selection of surgical approaches for small acoustic neurinomas. Surg Neurol. 2000;53(1):52–9. discussion 59–60.

    Article  CAS  PubMed  Google Scholar 

  75. Staecker H, et al. Hearing preservation in acoustic neuroma surgery: middle fossa versus retrosigmoid approach. Am J Otol. 2000;21(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  76. Chee GH, Nedzelski JM, Rowed D. Acoustic neuroma surgery: the results of long-term hearing preservation. Otol Neurotol. 2003;24(4):672–6.

    Article  PubMed  Google Scholar 

  77. Colletti V, Fiorino F. Is the middle fossa approach the treatment of choice for intracanalicular vestibular schwannoma? Otolaryngol Head Neck Surg. 2005;132(3):459–66.

    Article  PubMed  Google Scholar 

  78. Gjuric M, et al. Vestibular schwannoma volume as a predictor of hearing outcome after surgery. Otol Neurotol. 2007;28(6):822–7.

    Article  PubMed  Google Scholar 

  79. Phillips DJ, et al. Predictive factors of hearing preservation after surgical resection of small vestibular schwannomas. Otol Neurotol. 2010;31(9):1463–8.

    PubMed  Google Scholar 

  80. Friedman RA, et al. Long-term hearing preservation after middle fossa removal of vestibular schwannoma. Otolaryngol Head Neck Surg. 2003;129(6):660–5.

    Article  PubMed  Google Scholar 

  81. Hilton CW, et al. Late failure rate of hearing preservation after middle fossa approach for resection of vestibular schwannoma. Otol Neurotol. 2011;32(1):132–5.

    Article  PubMed  Google Scholar 

  82. Quist TS, et al. Hearing preservation after middle fossa vestibular schwannoma removal: are the results durable? Otolaryngol Head Neck Surg. 2015;152(4):706–11.

    Article  PubMed  Google Scholar 

  83. Woodson EA, et al. Long-term hearing preservation after microsurgical excision of vestibular schwannoma. Otol Neurotol. 2010;31(7):1144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Betchen SA, Walsh J, Post KD. Long-term hearing preservation after surgery for vestibular schwannoma. J Neurosurg. 2005;102(1):6–9.

    Article  PubMed  Google Scholar 

  85. Lin VY, et al. Unilateral acoustic neuromas: long-term hearing results in patients managed with fractionated stereotactic radiotherapy, hearing preservation surgery, and expectantly. Laryngoscope. 2005;115(2):292–6.

    Article  PubMed  Google Scholar 

  86. Carlson ML, et al. Long-term hearing outcomes following stereotactic radiosurgery for vestibular schwannoma: patterns of hearing loss and variables influencing audiometric decline. J Neurosurg. 2013;118(3):579–87.

    Article  PubMed  Google Scholar 

  87. Hasegawa T, et al. Factors associated with hearing preservation after Gamma Knife surgery for vestibular schwannomas in patients who retain serviceable hearing. J Neurosurg. 2011;115(6):1078–86.

    Article  PubMed  Google Scholar 

  88. Watanabe S, et al. Stereotactic radiosurgery for vestibular schwannomas: average 10-year follow-up results focusing on long-term hearing preservation. J Neurosurg. 2016;125(Suppl 1):64–72.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Roche .

Electronic Supplementary Materials

Middle Fossa Approach for Intracanalicular Tumor: Step by Step Demonstration of Opening Technique (ZIP 630813 kb)

Demonstration of Middle Fossa Approach in Cadaveric Dissection: 3D Video (ZIP 2112790 kb)

Microsurgical Resection of Intracanalicular Vestibular Schwannoma with Hearing Preservation via Middle Fossa Approach: 3D Operative Video (ZIP 1477279 kb)

Microsurgical Resection of Intracanalicular Tumor Mimicking Schwannoma via Middle Fossa Approach: 3D Operative Video (ZIP 1064383 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dogan, I., Sahin, O.S., Roche, J.P. (2019). Middle Fossa Approach to Vestibular Schwannomas. In: Vestibular Schwannoma Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-99298-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99298-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99297-6

  • Online ISBN: 978-3-319-99298-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics