Skip to main content

Process Control of Sintered Ag Joint in Production for Die Attach Applications

  • Chapter
  • First Online:

Abstract

This chapter reviews the main process steps and equipment in producing sintered Ag joints as die attach joint, associated process control, and related tools to enable this control and reliability tests. The primary process steps of sintered Ag joints are substrate/wafer printing, preheating, die laminating, placement, and pressure sintering. Unlike solder joint, sintered Ag joint does not form intermetallic with the common substrates used in the die attach joints nor resolidify upon joint formation. In spite of these differences, the process control of the sintered Ag joints is quite similar to the traditional epoxy adhesives and solder die attach, as the former also uses tools such as SEM, optical microscopy, die shear tester, etc., to measure the porosity and fillet heights, die placement, rotation, and tilt as well as bond strength. However, the die placement and pressure-sintering steps require additional care because of the absence of self-alignment and ability to rework in a solid-state sintering process. In addition, the measurement of nano-sized porosity and voids is also crucial to control properties of the sintered Ag joint, such as density, thermal conductivity, and thermal-mechanical stresses. These pore structures also depend on the different processing steps and materials formulation used in the manufacturing process. Other failure analysis tools like DSC-TGA, TMA, TEM, TOF-SIMS, C-SAM, thermography, X-ray radiography, thermal impedance analysis, and FEA modeling are also introduced here within the context of manufacturing the sintered Ag joint en masse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    DA5 consortium consists of Bosch, Infineon Technologies, NXP Semiconductors, STMicroelectronics, and Nexperia, formed to look for alternative Pb-free technologies to comply with EU Directives on Restriction of Hazardous Substances (ROHS) 2011/65/EU by July 2021.

  2. 2.

    Typical composition of this acid is 25% NH4/distilled water/100% H2O2 = 11:10:16 for 2–3 s (Zhao et al. [30])

References

  1. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 41, 824–832 (2010)

    Article  Google Scholar 

  2. V.R. Manikam, C. Kuan Yew, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457–478 (2011)

    Article  CAS  Google Scholar 

  3. B.J. Baliga, IEEE Electron Device Lett. 10, 455–457 (1989)

    Article  Google Scholar 

  4. Infineon, Die Attach -5 Project (2018), https://www.infineon.com/dgdl/DA5_customer_presentation_1612016.pdf?fileId. Accessed 22 Feb 2018

  5. K.S. Siow, Y.T. Lin, J. Electron. Packag. 138, 020804-1–020804-13 (2016)

    Google Scholar 

  6. K.S. Siow, M. Eugénie, in 2016 I.E. 37th International Electronic Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference, 2016. pp. 1–6

    Google Scholar 

  7. K.S. Siow, J. Electron. Mater. 43, 947–961 (2014)

    Article  CAS  Google Scholar 

  8. F. Yu, J. Cui, Z. Zhou, K. Fang, R. Johnson, M. Hamilton, IEEE Trans. Power Electron. 32, 7083–7095 (2017)

    Article  Google Scholar 

  9. S.T. Chua, K.S. Siow, J. Alloys Compd. 687, 486–498 (2016)

    Article  CAS  Google Scholar 

  10. M. Knoerr, S. Kraft, A. Schletz, 12th IEEE Electronics Packaging Technology Conference, Singapore, 2010. pp. 56–61

    Google Scholar 

  11. V.A. Ivensen, Densification of metal powders during sintering, Consultants Bureau, 1973

    Google Scholar 

  12. J.K. Mackenzie, R. Shuttleworth, Proc. Phys. Soc. Sect. B 62, 833 (1949)

    Article  Google Scholar 

  13. M.B.G. Koelink (Boschman Technologies), Private Communication, 2017

    Google Scholar 

  14. T. Wang, M. Zhao, X. Chen, G.Q. Lu, K. Ngo, S. Luo, J. Electron. Mater. 41, 2543–2552 (2012)

    Article  CAS  Google Scholar 

  15. W. Ng, K. Kumagai, K. Sweatman, T. Nishimura, 17th IEEE Electronics Packaging and Technology Conference, Singapore, 2015, pp 1–6

    Google Scholar 

  16. H. Mutoh, N. Moriyama, K. Kaneko, Y. Miyazawa, H. Kida, in IOP Conference Series: Materials Science and Engineering, Vol. 61, Institute of Physics Publishing, 2014

    Google Scholar 

  17. E.N. Kablov, V.I. Lukin, N V S. Ryl, A.F. Cherkasov, E.K.A.N. Afanas, Method of drying coating of silver-coating paste, Federal Noe Gup Vrnii Aviat Materialov Fgup Viam, RU2564518, 2014

    Google Scholar 

  18. O. Khaselev, E. Boschman, Method for die and chip attachment, Alpha Assembly & Adv Packaging Ctr B.V., WO2016100470, 2016

    Google Scholar 

  19. Heraeus, Heraeus Sinter Materials (2016), http://www.heraeus.com/en/het/products_and_solutions_het/sinter_materials/sinter_materials___page.aspx. Accessed on 24 Oct 2016

  20. R. Bayerer, O. Hohlfield, Method for producing a composite and a power semiconductor module, Infineon Tech, US20130203218A1, 2012

    Google Scholar 

  21. W. Knapp, Method for mounting electronic components on substrates, ABB Res. US6935556B2, 2005

    Google Scholar 

  22. L. Viswanathan, L.M. Mahalingam, D. Abdo, J. Molla, Packaged semiconductor devices and methods of their fabrication, Freescale Semiconductor, US9099567B1, 2015

    Google Scholar 

  23. H. Hauenstein, Sintering utilizing non-mechanical pressure, International Rectifier Corporation, US20140224409A1, 2014

    Google Scholar 

  24. L. Wang, 16th IEEE International Conference Electronic Packaging Technology, Changsha, China, 2015, pp. 1317–1320

    Google Scholar 

  25. Boschman, Advanced molding and sintering systems: sinterstar innovate F-XL (2016), http://www.boschman.nl/index.php/sintering-systemplatforms/sinterstar-innovate-f-xl.html. Accessed on 9 Mar 2016

  26. C. Gobl, J. Faltenbacher, in 6th IEEE International Conference Integrated Power Electron System, Nuremberg, 2010. p. 1

    Google Scholar 

  27. Y. Zhao, Y. Wu, K. Evans, J. Swingler, S. Jones, X. Dai, 15th IEEE International Conference on Electronic Packaging Technology, ed. by K. Bi, Z. Tian, Z. Xu. 2014, pp. 200–204

    Google Scholar 

  28. Smart Equipment Technology, FC150 Automated Die/Flip Chip Bonder (2016), http://www.set-sas.fr/en/cat422408%2D%2DFC150.html?Cookie=set

  29. Datacon 2200 Evo plus BESI (2017), https://www.besi.com/products-technology/product-details/product/datacon-2200-evo/. Accessed on 24 Feb 2018

  30. S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Microelectron. Reliab. 55, 2524–2531 (2015)

    Article  CAS  Google Scholar 

  31. S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N. C. Lee, 16th IEEE International Conference on Electronic Packaging Technology, 2015, pp. 367–374

    Google Scholar 

  32. S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994–1001 (2014)

    Article  CAS  Google Scholar 

  33. C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, H. Morel, IMAPS International Conference on High Temperature Electronics Network, Oxford, 2011, pp. 84–90

    Google Scholar 

  34. R.Y. Agustin, J.M. Jucar, J.S. Talledo, 23rd ASEMEP National Technical Symposium 2015, pp. 1–6

    Google Scholar 

  35. J. Weidler, R. Newman, C. J. Zhai, 52nd IEEE Electronic Components and Technology Conference 2002. (Cat. No.02CH37345), 2002, pp. 1172–1177

    Google Scholar 

  36. T. Adams, Inverted Acoustic System Cuts IGBT Failures (2011), http://www.powerelectronics.com/power-electronics-systems/invertedacoustic-system-cuts-igbt-failures, accessed on 24 Feb 2018

  37. G.Q. Lu, J.N. Calata, Z. Zhang, J.G. Bai, 6th IEEE Conference High Density Microsystems Design Packaging Component Failure Analysis, Shanghai, 2004, pp. 42–46

    Google Scholar 

  38. V. R. Manikam, S. Paing, A. Ang, 15th Electronics Packaging Technology Conference Singapore, 2013, pp. 152–155

    Google Scholar 

  39. S.T. Chua, K. S. Siow, A.Jalar, 36th IEEE International Electronics Manufacturing Technology, Johor Bahru, 2014. pp. 1–6

    Google Scholar 

  40. V.R. Manikam, E.N. Tolentino, 16th IEEE Electronics Packaging Technology Conference, Singapore, 2014, pp. 1–5

    Google Scholar 

  41. H. Zheng, D. Berry, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 377–384 (2014)

    Article  CAS  Google Scholar 

  42. Y. Mei, G.Q. Lu, X. Chen, S. Luo, D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 312–315 (2011)

    Article  CAS  Google Scholar 

  43. F. Cosiansi, E. Mattiuzzo, M. Turnaturi, P.F. Candido, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016, pp. 1–5

    Google Scholar 

  44. Japan Electronics and Information Technology Industries Association (JEITA) Technical Standardization Center, https://home.jeita.or.jp/tsc/downloadE.html. Accessed on 24th Feb 2018

  45. H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, S. Isoda, J. Electron. Mater. 39, 1233–1240 (2010)

    Article  CAS  Google Scholar 

  46. S. Takata, T. Ogura, E. Ide, T. Morita, A. Hirose, J. Electron. Mater. 42, 507–515 (2013)

    Article  CAS  Google Scholar 

  47. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385–2393 (2005)

    Article  CAS  Google Scholar 

  48. C. Fruh, M. Gunther, M. Rittner, A. Fix, M. Nowottnick, 3rd IEEE Electronic Systems Integrated Technology Conference, Berlin, 2010. pp. 1–5

    Google Scholar 

  49. W. Schmitt, 6th International Conference on Integrated Power Electronics Systems, 2010, pp. 1–6

    Google Scholar 

  50. K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C.P. Wong, J. Electron. Mater. 34, 168–175 (2005)

    Article  CAS  Google Scholar 

  51. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, 8th IEEE High Density Microsystem Design Packaging and Component Failure Analysis 2005, Shanghai, 2006

    Google Scholar 

  52. Y. Fang, R.W. Johnson, M.C. Hamilton, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1258–1264 (2015)

    Article  Google Scholar 

  53. A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z. Liang, Oak Ridge National Laboratory Technical Report ORNL/TM-2012/130, 2012, https://www.osti.gov/biblio/1041433, Accessed on 24 Feb 2018

  54. S. Wolfgang, T. Krebs, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016, pp. 1–7

    Google Scholar 

  55. S. Fu, Y. Mei, X. Li, P. Ning, G.-Q. Lu, J. Electron. Mater. 44, 3973–3984 (2015)

    Article  CAS  Google Scholar 

  56. K. S. Siow, 35th IEEE International Electronics Manufacturing Technology, Ipoh, 2012, pp. 1–6

    Google Scholar 

  57. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Electron. Mater. 39, 1283–1288 (2010)

    Article  CAS  Google Scholar 

  58. M.S. Kim, H. Nishikawa, Scr. Mater. 92, 43–46 (2014)

    Google Scholar 

  59. B. Boettge, B. Maerz, J. Schischka, S. Klengel, M. Petzold, 8th IEEE International Conference on Integrated Power Electronics Systems, 2014, pp. 1–7

    Google Scholar 

  60. T. Ogura, M. Nishimura, H. Tatsumi, N. Takeda, W. Takahara, A. Hirose, Open Surf. Sci. J. 33, 55–59 (2011)

    Google Scholar 

  61. Z. Zhang, Processing and Characterization of Micro-scale and Nanscale Silver Paste for Power Semiconductor Device Attachment, Virginia Polytechnic Institute and State University PhD thesis, 2005

    Google Scholar 

  62. Z. Pešina, V. Vykoukal, M. Palcut, J. Sopoušek, Electron. Mater. Lett. 10, 293–298 (2014)

    Article  Google Scholar 

  63. M.A. Asoro, D. Kovar, P.J. Ferreira, Chem. Commun. 50, 4835–4838 (2014)

    Article  CAS  Google Scholar 

  64. M.P. Allen, Introduction to molecular dynamics simulation, in Computational Soft Matter: From Synthetic Polymers to Proteins, ed. by N. Attig, K. Binder, H. Grubmüller, K. Kremer (Eds), vol. 23, (2004), pp. 1–28

    Google Scholar 

  65. S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, Upper Saddle River, N.J (Pearson Education, 2008)

    Google Scholar 

  66. J. Lian, Y. Mei, X. Chen, X. Li, G. Chen, K. Zhou, 13th International Conference on Electronic Packaging Technology & High Density Packaging, 2012. pp. 232–237

    Google Scholar 

  67. J.G. Bai, J.N. Calata, G.Q. Lu, 19th IEEE Annual Applied Power Electronics Conference and Exposition, 2004, pp. 1240–1246

    Google Scholar 

  68. G. Chen, L. Yu, Y.H. Mei, X. Li, X. Chen, G.Q. Lu, J. Mater. Process. Technol. 214, 1900–1908 (2014)

    Google Scholar 

  69. J.G. Bai, J.N. Calata, G.Q. Lu, IEEE Trans. Electron. Packag. Manuf. 30, 241–245 (2007)

    Article  CAS  Google Scholar 

  70. P. Rajaguru, H. Lu, C. Bailey, Microelectron. Reliab. 55, 919–930 (2015)

    Article  CAS  Google Scholar 

  71. X. Cao, T. Wang, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Pack. Manuf. Tech. 1, 495–501 (2011)

    Article  CAS  Google Scholar 

  72. W. Sabbah, R. Riva, S. Hascoet, C. Buttay, S. Azzopardi, E. Woirgard, D. Planson, B. Allard, R. Meuret, 7th International Conference on Integrated Power Systems, Nuremberg, Germany, 2012. p. 1

    Google Scholar 

  73. J. Rudzki, L. Jensen, M. Poech, L. Schmidt, F. Osterwald, 7th IEEE International Conference on Integrated Power Electronics Systems, 2012, pp. 1–6

    Google Scholar 

  74. S. Duch, T. Krebs, W. Schmitt, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–6

    Google Scholar 

  75. C. Schmidt, F. Altmann, O. Breitenstein, Mater. Sci. Eng. B 177, 1261–1267 (2012)

    Article  CAS  Google Scholar 

  76. M. Hutter, C. Weber, C. Ehrhardt, K. D. Lang, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–7

    Google Scholar 

  77. C. Weber, M. Hutter, H. Oppermann, K. D. Lang, PCIM International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2014. pp. 1–8

    Google Scholar 

  78. U. Sagebaum, ECPE European Centre for Power Electronics Double Workshop, Munich, Germany, 2014

    Google Scholar 

  79. S. Brand, F. Naumann, S. Tismer, B. Boettge, J. Rudzki, F. Osterwald, M. Petzold, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–6

    Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the feedback and support from Marco Koelink (Boschman Technologies BV), Giulio Locatelli (Locatelli Meccanica S.r.l.), Eric Kuah (ASM Technology) colleagues, managers, and friends involved in bringing this sintered Ag technology to the mainstream market. KSS also acknowledges Universiti Kebangsaan Malaysia Research Grants (GUP-2017-055 “Production of Metallic Conducting Nanowires for Industrial Applications”) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Siow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siow, K.S., Manikam, V.R., Chua, S.T. (2019). Process Control of Sintered Ag Joint in Production for Die Attach Applications. In: Siow, K. (eds) Die-Attach Materials for High Temperature Applications in Microelectronics Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-99256-3_3

Download citation

Publish with us

Policies and ethics