Skip to main content

Abstract

Silver sintering materials are one of the promising candidates for die attach to survive harsh operation conditions (≥200 °C) in applications such as hybrid/electric vehicles, high-speed train, aircraft/aviation, and deep well oil/gas extraction. This chapter focuses on elucidation of the joint formation processes of silver sintering and solder, as well as their comparison. The driving force of silver sintering is particle surface energy reduction. It occurs through solid-state atomic transportation such as various diffusions and viscous flow processes. Non-stoichiometric interdiffusion layer is generated through mutual atomic diffusion between silver and joining surface metallization. In contrast, solder joint is formed through metallurgical interaction between molten solder and joining surfaces followed by solder solidification, where stoichiometric intermetallic is normally observed at interfaces. Therefore, silver sintering joint may possess porosity, which greatly reduces its bulk mechanical properties such as elastic modulus, yield strength, strength to failure, ultimate tensile strength, and Poisson’s ratio, as well as its thermal and electrical conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of high temperature power electronics. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 176(4), 283–288 (2011)

    Article  CAS  Google Scholar 

  2. R. Kirschman, High Temperature Electronics (IEEE press, New York, 1999)

    Google Scholar 

  3. S. Chen, C. LaBarbera, N.C. Lee. Silver sintering paste rendering low porosity joint for high power die attach application. IMAPS Conference & Exhibition on HiTEN (Albuquerque, NM, 2016), pp. 237–245

    Google Scholar 

  4. M. Knoerr, S. Kraft, A. Schletz, Riliability assessment of sintered nano-silver die attachment for power semiconductors. 12th Electronics Packaging Technology Conference, 2010. pp. 56–61

    Google Scholar 

  5. E. Bradley, C.A. Handwerker, J. Bath, R.D. Parker, R.W. Gedney, Lead-Free Electronics (John Wiley & Sons, Hoboken, 2007)

    Book  Google Scholar 

  6. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.-Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006)

    Article  CAS  Google Scholar 

  7. Y. Mei, T. Wang, X. Cao, G. Chen, G.-Q. Lu, X. Chen, Transient thermal impedance measurements on low-temperature-sintered nanoscale silver joints. J. Electron. Mater. 41, 3152–3160 (2012)

    Article  Google Scholar 

  8. G. Chen, L. Yu, Y. Mei, X. Li, X. Chen, G.-Q. Lu, Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging. Mater. Sci. Eng. A 591, 121–129 (2014)

    Article  CAS  Google Scholar 

  9. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: a review. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457–478 (2011)

    Article  CAS  Google Scholar 

  10. S. Fu, Y. Mei, G.-Q. Lu, X. Li, G. Chen, X. Chen, Pressureless sintering of nanosilver paste at low temperature to join large area (≥100 mm2) power chips for electronic packaging. Mater. Lett. 128, 42–45 (2014)

    Article  CAS  Google Scholar 

  11. J.F. Yan, G.S. Zou, A.P. Wu, J.L. Ren, J.C. Yan, A.M. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582–585 (2012)

    Article  CAS  Google Scholar 

  12. H. Schwarzbauer, Method of securing electronic components to a substrate. 4810672 United States, 1987

    Google Scholar 

  13. H. Schwarzbauer, R. Kuhnert, Novel large area joining technique for improved power device performance, in Conference Record of the 1989 I.E. Industry Applications Society Annual Meeting, (IEEE, New York, 1989), pp. 1348–1351 (2016)

    Google Scholar 

  14. H. Schwarzbauer, R. Kuhnert, Novel large area jointing technique for improved power device performance. IEEE Ind. Appl. Soc. Annu. Meet. 27, 93–95 (1991)

    Google Scholar 

  15. C. Gobl, J. Faltenbacher, Low temperature sinter technology die attachment for power electronic applications. Proceedings of 6th International Conference on Integerated Power Electronic Systems (Nuremburg, Germany, 2010), pp. 1–5.

    Google Scholar 

  16. H. Zheng, J. Calata, K. Ngo, S. Luo, and G.-Q. Lu. Low-pressure (<5 MPa) low-temperature joining of large-area chips on copper using nanosilver paste (Nuremberg, Germany, 2012), CIPS 2012. p. Paper12.3

    Google Scholar 

  17. J.G. Bai, G-Q Lu, Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly. IEEE. T. Device Mat. Re. 6, 436–441 (2006)

    Article  CAS  Google Scholar 

  18. T. Wang, M. Zhao, X. Chen, G.Q. Lu, K. Ngo, S. Luo, Shrinkage and sintering behaviorof a low-temperature sinterable nanosilver die-attach paste. J. Electron. Mater. 41(9), 2543–2552 (2012)

    Article  CAS  Google Scholar 

  19. F. Yu, R.W. Johnson, M. Hamilton, Pressureless, low temperature sintering of micro-scale silver paste for die attach for 300 °C applications. IMAPS Conference & Exhibition on HiTEN, 2014. pp. 165–171

    Google Scholar 

  20. G. Lewis, G. Dumas, S.H. Mannan, Evaluation of pressure free nanoparticle sintered silver die attach on silver and gold surface. IMAPS Conference & Exhibitionon HiTEN, 2013. pp. 237–245

    Google Scholar 

  21. K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014)

    Article  CAS  Google Scholar 

  22. K.S. Siow, Mechanical properties of nano-Ag as die attach materials. J. Alloys Compd. 514, 6–19 (2012)

    Article  CAS  Google Scholar 

  23. K.S. Siow, Y.T. Lin, Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138, 020804-1–020804-13 (2016)

    Article  Google Scholar 

  24. R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43(7), 2459–2466 (2014)

    Article  CAS  Google Scholar 

  25. G. Humston, D. Jacobson, Principles of soldering and brazing. Materials Park, OH, USA: ASM International, 1993

    Google Scholar 

  26. A. Rahn, The Basics of Soldering (John Wiley & Sons, New York, 1993)

    Google Scholar 

  27. D. Shangguan, Lead-free Solder Interconnection Reliability (ASM International, Materials Park, 2005)

    Google Scholar 

  28. M. Thomas, Die-attach materials and processes – a lead-free solution for power and high-power applications. Adv. Packag. 30, 32–34 (2007)

    Google Scholar 

  29. F.P. McCluskey, M. Dash, Z. Wang, D. Huff, Reliability of high temperature solder alternatives. Microelectron. Reliab. 46, 1910–1914 (2006)

    Article  CAS  Google Scholar 

  30. X. Xie, X. Bi, G. Li, Thermal-mechanical fatigue reliability of PbSnAg solder layer of die attachement for power electronic devices. 2009 International Conference on Electronic Packaging Technology & High Density Packaging (IEEE Xplore, 2009), pp. 1181–1186

    Google Scholar 

  31. I. Okamoto, T. Yasuda, Selection of optimum Cu content in Cu bearing tin-lead solder. Transaction of JWRI, 1986. pp. 245–252

    Google Scholar 

  32. K.N. Tu, K. Zeng, Tin–lead (SnPb) solder reaction in flip chip technology. Material Science and Engineering Report, 2001. pp. 1–58

    Google Scholar 

  33. E.A. Moelwyn-Hughes, The Kinetics of Reactions in Solution (Oxford University Press, London, 1947)

    Google Scholar 

  34. M. Schaefer, W. Laub, R.A. Fournelle, J. Liang, Design and Reliability of Solders and Solder Interconnections (The Minerals, Metals & Materials Society, Orlando, 1997), pp. 247–257

    Google Scholar 

  35. F. Bartels, J.W. Morris, G. Dalke Jr., W. Gust, Intermetallic phase formation in thin solid-liquid diffusion couples. J. Electron. Mater. 23, 787–790 (1994)

    Article  CAS  Google Scholar 

  36. Y. Wu, J.A. Sees, C. Pouraghabagher, L.A. Foster, J.L. Marshall, E.G. Jacobs, R.F. Pinizotto, The formation and growth of intermetallic in composite solder. J. Electron. Mater. 22, 769–777 (1993)

    Article  CAS  Google Scholar 

  37. D.F. Frear, P.T. Vianco, Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys. Metall. Mater. Trans. A. 25, 1509–1513 (1994)

    Article  Google Scholar 

  38. C.E. Ho, S.C. Yang, C.R. Kao, Interfacial reaction issues for lead-free electronic solders. J. Mater Sci. Electron. 18, 155–174 (2007)

    Google Scholar 

  39. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R 49, 1–60 (2005)

    Article  Google Scholar 

  40. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: Review. Microelectron. Reliab. 52, 1306–1322 (2012)

    Article  CAS  Google Scholar 

  41. L.P. Lehman, Y. Xing, T.R. Bieler, E.J. Cotts, Cyclic twin nucleation in tin-based solder alloys. Acta Mater. 58, 3546–3556 (2010)

    Article  CAS  Google Scholar 

  42. T.K. Lee, T.R. Bieler, C.U. Kim, H.T. Ma, Fundamentals on Lead-free Solder Interconnect Technology from Microstructures to Reliability (Springer, London, 2015)

    Google Scholar 

  43. T.H. Courtney, Mechanical Behavior of Materials (Waveland Press, Long Grove, 2005)

    Google Scholar 

  44. L. Vitos, A. Ruban, H.L. Skriver, J. Kollar, The surface energy of metals. Surf. Sci. 411(1), 186–202 (1998)

    Article  CAS  Google Scholar 

  45. E.C. Garnett, W.S. Cai, J.J. Cha, F. Mahmood, S. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012)

    Article  CAS  Google Scholar 

  46. M. Hosel, F.C. Krebs, Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J. Mater.Chem. 22(31), 15683–15688 (2012)

    Article  Google Scholar 

  47. M.K. Kim, H. Kang, K. Kang, S.H. Lee, J.Y. Hwang, Y. Moon, S.J. Moon, Laser Sintering of Inkjet-Printed SilverNanoparticles on Glass and PET Substrates. 10th IEEE Conference onNanotechnology (IEEE-NANO) (IEEE, New York, 2010), pp. 520–524

    Google Scholar 

  48. H. Huang, M. Sivayoganathan, W. Duley, Y. Zhou, Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 331, 392–398 (2015)

    Article  CAS  Google Scholar 

  49. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943–1948 (2010)

    Article  CAS  Google Scholar 

  50. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a “Built-in” mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354–3359 (2011)

    Article  CAS  Google Scholar 

  51. D. Wakuda, M. Hatamura, K. Suganuma, Novel method for roomtemperature sintering of Ag nanoparticle paste in air. Chem. Phys. Lett. 441(4–6), 305–308 (2007)

    Article  CAS  Google Scholar 

  52. D. Wakuda, K.S. Kim, K. Suganuma, Room temperature sinteringof Ag nanoparticles by drying solvent. Scr. Mater. 59, 649–652 (2008)

    Article  CAS  Google Scholar 

  53. S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier, 2005)

    Google Scholar 

  54. P. Peng, A.M. Hu, A.P. Gerlich, G.S. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: Processes, properties, and applications. ACS Appl. Mater. Interfaces 7, 12597–12618 (2015)

    Article  CAS  Google Scholar 

  55. J.K. Mackenzie, R. Shuttleworth, A phenomenological theory of sintering. Proc. Phys. Soc. Sect. B 62(12), 833–852 (1949)

    Article  Google Scholar 

  56. J. Frenkel, Viscous flow of crystalline bodies under the action of surface tension. J. Phys. (USSR) 9, 385–391 (1945)

    Google Scholar 

  57. V. Tikare, M. Braginsky, D. Bouvard, A. Vagnon, Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact. Comput. Mater. Sci. 48, 317325 (2010)

    Article  Google Scholar 

  58. C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Physiol. 21, 301–303 (1950)

    Article  CAS  Google Scholar 

  59. Q. Jiang, F.G. Shi, Size-dependent initial sintering temperature of ultrafine particles. J. Mater. Sci. Technol. 14, 171172 (1998)

    Google Scholar 

  60. H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54(6), 884–889 (2013)

    Article  CAS  Google Scholar 

  61. S. Chen, C. LaBarbera, N.C. Lee, Low temperature sinterable silver paste for high power die attach application. Proceedings of the International Conference on Soldering & Reliability, SMTA, Markham, 2017

    Google Scholar 

  62. S. Chen, C. LaBarbera, N.C. Lee, Pressure-less silver sintering pastes for low porosity joint and large area dies. Proceedings of SMTA International (Rosemont, IL, 2016), pp. 379–387

    Google Scholar 

  63. S. Fu, Y. Mei, X. Li, P. Ning, G.-Q. Lu, Parametric study on pressureless sintering of nanosilver paste to bond large area (≥100 mm2) power chips at low temperatures for electronic packaging. J. Electron. Mater. 44, 3973–3984 (2015)

    Article  CAS  Google Scholar 

  64. D.R. Frear, P.T. Vianco, Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys. Metall. Mater. Trans. A. 25A, 1509–1603 (1994)

    Article  CAS  Google Scholar 

  65. S.P. Lim, B.H. Pan, H.W. Zhang, W. Ng, B. Wu, K.S. Siow, S. Sabne, M. Tsuriya, High-temperature Pb-free die attach material project phase 1: Survey result, in 2017 International Conference on Electronics Packaging (ICEP), (IEEE, Yamagata, 2017), pp. 51–56

    Google Scholar 

  66. D.J. Green, O. Guillon, J. Rodel, Constrained sintering: A delicate balance of scales. J. Eur. Ceram. Soc. 28(7), 1451–1466 (2008)

    Article  CAS  Google Scholar 

  67. N.-C. Lee, Reflow Soldering Processing and Troubleshooting SMT, BGA, CSP, and Flip Chip Technologies (Newnes, 2001), pp. 127–133

    Google Scholar 

  68. N.-C. Lee, G.P. Evans, Solder paste – meeting the SMT challenge, 1987. SITE Magazine

    Google Scholar 

  69. W.B. Hance, N.C. Lee, Voiding mechanisms in SMT, in China Lake’s 17th Annual Electronics Manufacturing Seminar, (China Lake, 1993)

    Google Scholar 

  70. T.A. Krinke, D.K. Pai, Factors affecting thermal fatigue life of LCCC solder joints. Weld. J. 67, 33–40 (1988)

    Google Scholar 

  71. D.J. Xie, Y.C. Chan, J.K.L. Lai, An Experimental Approach to Pore-free Reflow Soldering. IEEE Trans. Compon. Packag. Manuf. Technol. Part B: Adv. Packag. 19(1), 148–153 (1996)

    Article  CAS  Google Scholar 

  72. W. Rmili, N. Vivet, S. Chupin, T. Le Bihan, G. Le Quilliec, C. Richard, Quantitative analysis of porosity and transport properties by FIB-SEM 3D imaging of a solder based sintered silver for a new microelectronic component. J. Electron. Mater. 45(4), 2242–2251 (2016)

    Article  CAS  Google Scholar 

  73. E.A. Wargo, T. Kotaka, Y. Tabuchi, E.C. Kumbur, Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials. J. Power Sources 241, 608–618 (2013)

    Article  CAS  Google Scholar 

  74. A. Madra, N. El Hajj, M. Benzeggagh, X-ray microtomography applications for quantitative and qualitative analysis of porosity in woven glass fiber reinforced thermoplastic. Compos. Sci.Technol. 95, 50–58 (2014)

    Article  CAS  Google Scholar 

  75. L. Vergara, R. Miralles, J. Gosálbez, F.J. Juanes, L.G. Ullate, J.J. Anaya, M.G. Hernández, M.A.G. Izquierdo, NDE ultrasonic methods to characterize the porosity of mortar. NDT&E Int. (Elsevier) 34(8), 557–562 (2001)

    Article  CAS  Google Scholar 

  76. V.S. Maalej, Z. Lafhaj, M. Bouassida, Micromechanical modelling of dry and saturated cement paste: Porosity assessment using ultrasonic waves. Mech. Res. Commun. 51, 8–14 (2013)

    Article  Google Scholar 

  77. W. Shen, L. Feng, A. Lei, Z. Liu, Y. Chen, Effects of porosity and pore size on the properties of AgO-decorated porous diatomite ceramic composites. Ceram. Int. 40(1), 1495–1502 (2014)

    Article  CAS  Google Scholar 

  78. X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, M. Gerland, Influence of the porous microstructure on the elastic properties of sintered Ag paste as replacement material for die attachment. J. Electron. Mater. 44(10), 3948–3956 (2015)

    Article  CAS  Google Scholar 

  79. A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z.X. Liang, Properties of bulk sintered silver as a function of porosity. Oak Ridge National Laboratory, 2012, pp. ORNL/TM-2012/130

    Google Scholar 

  80. V. Caccuri, X. Milhet, P. Gadaud, D. Bertheau, M. Gerland, Mechanical properties of sintered Ag as a new material for die bonding: influence of the density. J. Electron. Mater. 43, 4510–4514 (2014)

    Article  CAS  Google Scholar 

  81. J. Carr, X. Milhet, P. Gadaud, S.A.E. Boyer, G.E. Thompson, P.D. Lee, Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints. J. Mater. Process. Technol. 225, 19–23 (2015)

    Article  CAS  Google Scholar 

  82. G. Bai, Virginia Polytechnic Institute and State University PhD thesis, Blacksburg, VA, 2005

    Google Scholar 

  83. G. Ondracek, On the relationship between the properties and the microstructure of multiphase materials Part III: Microstructure and Young's modulus of elasticity. Z. Werkstofft. 9, 96–100 (1979)

    Article  Google Scholar 

  84. N. Ramakrishnan, V.S. Arunachalam, Effective elastic moduli of porous solids. J. Mater. Sci. 25, 3930 (1990)

    Article  Google Scholar 

  85. T. Herboth, M. Guenther, A. Fix, J. Wilde, Failure Mechanisms of Sintered Silver Interconnections for Power Electronic Applications (IEEE, 2013), pp. 1621–1627

    Google Scholar 

  86. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution. Mater. Sci. Eng. A 669, 379–386 (2016)

    Article  CAS  Google Scholar 

  87. N. Alayli, F. Schoenstein, A. Girard, K.L. Tan, P.R. Dahoo, Spark plasma sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties. Mater. Chem. Phys. 148, 125–133 (2014)

    Article  CAS  Google Scholar 

  88. J. Ordonez-Miranda, M. Hermens, I. Nikitin, V.G. Kouznetsova, O. van der Sluis, M.A. Ras, J.S. Reparaz, M.R. Wagner, M. Sledzinska, J. Gomis-Bresco, C.M. Sotomayor Torres, B. Wunderle, S. Bolz, Measurement and modeling of the effective thermal conductivity of sintered silver pastes. Int. J. Therm. Sci. 108, 185–194 (2016)

    Article  CAS  Google Scholar 

  89. A.S. Zuruzi, K.S. Siow, Electrical conductivity of porous silver made from sintered nanoparticles. Electron. Mater. Lett. 11, 308–314 (2015)

    Article  CAS  Google Scholar 

  90. J.R. Greer, R.A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345–6349 (2007)

    Article  CAS  Google Scholar 

  91. J. Scola, X. Tassart, C. Cilar, F. Jomard, E. Dumas, Y. Veniaminova, P. Boullay, S. Gascoin, Microstructure and electrical resistance evolution during sintering of a Ag nanoparticle paste. J. Phys. D. Appl. Phys. 48, 145302 (2015)

    Article  Google Scholar 

Download references

Acknowledgment and Note

We gratefully thank Dr. Ning-Cheng Lee for his continuous support during the writing of this chapter. Dr. Hongwen Zhang focused on Sect. 2; Dr. Sihai Chen was in charge of Sects. 1, 3, 4, 5, and 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Zhang, H. (2019). Silver Sintering and Soldering: Bonding Process and Comparison. In: Siow, K. (eds) Die-Attach Materials for High Temperature Applications in Microelectronics Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-99256-3_1

Download citation

Publish with us

Policies and ethics