Skip to main content

GaN Substrate Material for III–V Semiconductor Epitaxy Growth

  • Chapter

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 4))

Abstract

The rapid commercialization of III-nitride semiconductor devices for applications in visible and ultraviolet optoelectronics and in high-power and high-frequency electronics accelerates the research, development, and commercial production of GaN substrate materials. GaN substrate with low defect density will be conducive to improve the performance and lifetime of the devices, leading to significant progress in the development of several optoelectronic and high-power devices. In this paper, various fabrication techniques and their corresponding development, considered with high potential to deliver high-quality and/or cost-effective and scalable GaN crystals, are reviewed, including liquid-phase methods and gas-phase methods. Among these growth methods, hydride vapor-phase epitaxy (HVPE) is well known as the major substrate technology with high growth rate, high crystal quality, and low cost, which attracts more attention. So, we have a special discussion on the detailed technological aspects of HVPE for the production of GaN substrate materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Hanser, M. Tutor, E. Preble, M. Williams, X. Xu, D. Tsvetkov, L. Liu, J. Cryst. Growth 305, 372–376 (2007)

    Article  Google Scholar 

  2. I. Grzegory, B. Ucznik, M. Bokowski, et al., J. Cryst. Growth 300(1), 17–25 (2007)

    Article  Google Scholar 

  3. J. Karpiski, S. Porowski, S. Miotkowska, J. Cryst. Growth 56(1), 77–82 (1982)

    Article  Google Scholar 

  4. M. Bokowski, M. Wroblewski, B. Lucznik, et al., Mater. Sci. Semicond. Process. 4(6), 543–548 (2001)

    Article  Google Scholar 

  5. D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, Jpn. J. Appl. Phys. 52, 08JA01 (2013)

    Article  Google Scholar 

  6. W. Jiang, D. Ehrentraut, B.C. Downey, D.S. Kamber, R.T. Pakalapati, H.D. Yoo, M.P. D’Evelyn, J. Cryst. Growth 403, 18 (2014)

    Article  Google Scholar 

  7. H. Yamane, M. Shimada, S.J. Clarke, et al., Chem. Mater. 9(2), 413–416 (1997)

    Article  Google Scholar 

  8. T. Yamada, H. Yamane, Y. Yao, et al., Mater. Res. Bull. 44(3), 594–599 (2009)

    Article  Google Scholar 

  9. T. Yamada, H. Yamane, H. Iwata, et al., J. Cryst. Growth 286(2), 494–497 (2006)

    Article  Google Scholar 

  10. M. Morishita, F. Kawamura, M. Kawahara, et al., J. Cryst. Growth 284(1), 91–99 (2005)

    Article  Google Scholar 

  11. F. Kawamura, H. Umeda, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, H. Okado, K. Arakawa, H. Mori, Jpn. J. Appl. Phys. 45, 2528–2530 (2006)

    Article  Google Scholar 

  12. F. Kawamura, H. Umeda, M. Morishita, et al., Jpn. J. Appl. Phys. 2(45), L1136–L1138 (2006)

    Article  Google Scholar 

  13. Y. Mori, M. Imade, K. Murakami, et al., J. Cryst. Growth 350(1), 72–74 (2012)

    Article  Google Scholar 

  14. F. Kawamura, M. Morishita, M. Tanpo, et al., J. Cryst. Growth 310(17), 3946–3949 (2008)

    Article  Google Scholar 

  15. Y. Mori, M. Imade, M. Maruyama, et al., ECS J. Solid State Sci. Technol. 2(8), N3068–N3071 (2013)

    Article  Google Scholar 

  16. M. Imade, K. Murakami, D. Matsuo, et al., Cryst. Growth Des. 12(7), 3799–3805 (2012)

    Article  Google Scholar 

  17. M. Imanishi, K. Murakami, H. Imabayashi, et al., Phys. Status Solidi C 2012, 1–5 (2012)

    Google Scholar 

  18. E. Maissner, B. Birkmann, S. Hussy, G. Sun, J. Friedrich, G. Mueller, Phys. Status Solidi 2, 2040–2043 (2005)

    Article  Google Scholar 

  19. B.N. Feigelson, R.M. Frazier, M. Gowda, J.A. Freitas, M. Fatemi, M.A. Mastro, J.G. Tischer, J. Cryst. Growth 310, 3934–3940 (2008)

    Article  Google Scholar 

  20. S. Fischer, C. Wetzel, W.L. Hansen, E.D. Bourret-Courchesne, B.K. Meyer, E.E. Haller, Appl. Phys. Lett. 69, 2716 (1996)

    Article  Google Scholar 

  21. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  Google Scholar 

  22. T.L. Chu, K. Ito, R.K. Smeltzer, S.S.C. Chu, J. Electrochem. Soc. 121(1), 159–162 (1974)

    Article  Google Scholar 

  23. M.J. Ilegems, J. Crystal Growth 13/14, 360–364 (1972)

    Article  Google Scholar 

  24. R.K. Crouch, W.J. Debnam, A.L. Fripp, J. Mater. Sci. 13, 2358–2364 (1978)

    Article  Google Scholar 

  25. T. Detchprohm, K. Hiramatsu, H. Amano, I. Akasaki, Appl. Phys. Lett. 61, 2688 (1992)

    Article  Google Scholar 

  26. A. Usui, H. Sunakawa, A. Sakai, A.A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997)

    Article  Google Scholar 

  27. J.J. Nickl, W. Just, R. Bertinger, Mater. Res. Bull. 9, 1413–1420 (1974)

    Article  Google Scholar 

  28. H. Lee, M. Yuri, T. Ueda, J.S. Harris, Mater. Res. Soc. Symp. Proc. 423, 233–238 (1996)

    Article  Google Scholar 

  29. H. Tsuchiya, M. Akamatsu, M. Ishida, F. Hasegawa, Jpn. J. Appl. Phys. 36, L748–L750 (1996)

    Article  Google Scholar 

  30. Y. Morimoto, K. Uchiho, S. Ushio, J. Electrochem. Soc. 120, 1783–1785 (1973)

    Article  Google Scholar 

  31. P.J. Born, D.S. Robertson, J. Mater. Sci. 15, 3003–2009 (1980)

    Article  Google Scholar 

  32. V.S. Ban, J. Electrochem. Soc. 119, 761 (1972)

    Article  Google Scholar 

  33. D.K. Wickenden, K.R. Faulkner, R.W. Brander, B.J. Isherwood, J. Cryst. Growth 9, 158–164 (1971)

    Article  Google Scholar 

  34. G. Nataf, B. Beaumont, A. Bouille, S. Haffouz, M. Vaille, P. Gibart, J. Cryst. Growth 192, 73 (1998)

    Article  Google Scholar 

  35. W. Zhang, T. Riemann, H.R. Alves, M. Heuken, D. Meister, W. Kriegseis, D.M. Hofmann, J. Christen, A. Krost, B.K. Meyer, J. Cryst. Growth 234, 616 (2002)

    Article  Google Scholar 

  36. R.J. Monlnar, K.B. Nichols, P. Maki, E.R. Brown, I. Melngailis, Mater. Res. Soc. Symp. Proc. 378, 479–484 (1995)

    Article  Google Scholar 

  37. J.J. Naniwae, S. Itoh, H. Amano, K. Itoh, K. Hiramatsu, I. Akasaki, J. Cryst. Growth 99, 381–384 (1990)

    Article  Google Scholar 

  38. R.J. Monlnar, P. Maki, R. Aggarwal, Z.L. Liau, E.R. Brown, I. Melngailis, W. Götz, L.T. Romano, N.M. Johnson, Mater. Res. Soc. Symp. Proc. 423, 221–226 (1996)

    Article  Google Scholar 

  39. M. Sano, M. Aoki, Jpn. J. Appl. Phys. 15, 1943–1950 (1976)

    Article  Google Scholar 

  40. A. Nikolaev, Y. Melnik, N. Kuznetsov, A. Strelchuk, A. Kovarsky, K. Vassilevski, V. Dmitriev, Mater. Res. Soc. Symp. Proc. 482, 251–256 (1998)

    Article  Google Scholar 

  41. G. Jacob, M. Boulou, M. Furtado, J. Cryst. Growth 42, 136–143 (1977)

    Article  Google Scholar 

  42. H. Tsuchiya, K. Sunaba, S. Yonemura, T. Suemasu, F. Hasegawa, Jpn. J. Appl. Phys. 36, L1–L3 (1997)

    Article  Google Scholar 

  43. A. Yamaguchi, T. Manak, A. Sakai, H. Sunakawa, A. Kimura, M. Nido, A. Usui, Jpn. J. Appl. Phys. 35, L873–L875 (1996)

    Article  Google Scholar 

  44. H. Tsuchiya, T. Okahisa, F. Hasegawa, H. Okumura, S. Yoshida, Jpn. J. Appl. Phys. 33, 1747–1752 (1994)

    Article  Google Scholar 

  45. W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg, S.L. Gibert, J. Appl. Phys. 44, 292–296 (1973)

    Article  Google Scholar 

  46. J. Hagen, R.D. Metcalfe, D. Wickenden, W. Clark, Solid State Phys. 11, L143–L146 (1978)

    Article  Google Scholar 

  47. B. Baranov, L. Däweritz, V.B. Gutan, G. Jungk, H. Neumann, H. Raidt, Phys. Status Solidi 49, 629–636 (1978)

    Article  Google Scholar 

  48. T.S. Zheleva, O.H. Nam, M.D. Bremser, R.F. Davis, Appl. Phys. 71, 2472 (1997)

    Google Scholar 

  49. A. Sakai, H. Sunakawa, A. Usui, Appl. Phys. Lett. 71, 2259 (1997)

    Article  Google Scholar 

  50. M.D. Craven, S.H. Lim, et al., Appl. Phys. Lett. 81(7), 1201 (2002)

    Article  Google Scholar 

  51. B. Beaumont, P. Gibart, M. Vaille, S. Haouz, G. Nataf, A. Bouille, J. Cryst. Growth 189/190, 97 (1998)

    Article  Google Scholar 

  52. H. Marchand, J.P. Ibbetson, P.T. Fini, X.H. Wu, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, MRS Int. J. Nitride Semicond. Res. 4S1, G4.5 (1999)

    Google Scholar 

  53. B.P. Wagner, Z.J. Reitmeier, J.S. Park, D. Bachelor, D.N. Zakharov, Z. Liliental Weber, R.F. Davis, J. Cryst. Growth 290(2), 504–512 (2006)

    Article  Google Scholar 

  54. C.R. Miskys, M.K. Kelly, O. Ambacher, M. Stutzmann, Phys. Status Solidi 6, 1627–1650 (2003)

    Article  Google Scholar 

  55. M.K. Kelly, R.P. Vaudo, V.M. Phanse, L.G. gens, O. Ambacher, M. Stutzmann, Jpn. J. Appl. Phys. 38L, 217 (1999)

    Article  Google Scholar 

  56. K. Tomita, T. Kachi, S. Nagai, A. Kojima, S. Yamasaki, M. Koike, Phys. Status Solidi 194, 563 (2002)

    Article  Google Scholar 

  57. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, A. Usui, Phys. Stat. Sol. A 194(2), 554 (2002)

    Article  Google Scholar 

  58. A. Usui, T. Ichihashi, K. Kobayashi, H. Sunakawa, Y. Oshima, T. Eri, M. Shibata, Phys. Stat. Sol. A 194(2), 572 (2002)

    Article  Google Scholar 

  59. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003)

    Article  Google Scholar 

  60. R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, J. Cryst. Growth 310, 3911 (2008)

    Article  Google Scholar 

  61. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, R. Kucharski, M. Zajac, M. Rudzinski, R. Kudrawiec, J. Serafinczuk, W. Strupinski, J. Cryst. Growth 312, 2499 (2010)

    Article  Google Scholar 

  62. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)

    Article  Google Scholar 

  63. D. Martin, J. Napierala, M. Ilegems, R. Butté, N. Grandjean, Appl. Phys. Lett. 88, 241914 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Zhang, R., Xiu, X. (2019). GaN Substrate Material for III–V Semiconductor Epitaxy Growth. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics