Skip to main content

Composite Dilations and Crystallographic Groups

  • Chapter
  • First Online:
Generalized Multiresolution Analyses

Part of the book series: Applied and Numerical Harmonic Analysis ((LN-ANHA))

  • 482 Accesses

Abstract

This chapter explores GMRAs in the familiar Hilbert space of \(L^2(\mathbb R^N)\), but with a non-abelian group Γ of “translations” that properly contains the integer lattice. Guo, Labate, Lim, Weiss and Wilson’s theory of composite dilations is included, as well as GMRAs and wavelets for the crystallographic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auslander, L.: An account of the theory of crystallographic groups. Proc. Am. Math. Soc. 16, 1230–1236 (1965)

    Article  MathSciNet  Google Scholar 

  2. Blanchard, J., Krishtal, I.: Matricial filters and crystallographic composite dilation wavelets. Math. Comput. 81, 905–922 (2012)

    Article  MathSciNet  Google Scholar 

  3. Blanchard, J., Steffen, K.: Crystallographic Haar-type composite dilation wavelets. In: Cohen, J., Zyed, A.I. (eds.) Wavelets and Multiscale Analysis: Theory and Applications, pp 83–108. Birkhäuser, Boston (2011)

    Chapter  Google Scholar 

  4. Federov, E.: Elements of the Theory of Figures. Imp. Acad. Sci., St. Petersburg (1885)

    Google Scholar 

  5. Federov, E.: Symmetry in the plane. Zapiski Rus. Mineralog. Obščestva, Ser. 2 28, 345–390 (1891)

    Google Scholar 

  6. Flaherty, T., Wang, Y.: Haar-type multiwavelet bases and self-affine multi-tiles. Asian J. Math. 3, 387–400 (1999)

    Article  MathSciNet  Google Scholar 

  7. González, A.L., Moure, M.C.: Crystallographic Haar wavelets. J. Fourier Anal. Appl. 17, 1119–1137 (2011)

    Article  MathSciNet  Google Scholar 

  8. Groöchenig, K., Madych, W.R.: Multiresolution analysis, Haar bases, and self-similar tilings of \(\mathbb R^n\). IEEE Trans. Inf. Theory 38, 556–568 (1992)

    Google Scholar 

  9. Groöchenig, K., Haas, A., Raugi, A.: Self-affine tilings with several tiles. Appl. Comput. Harmon. Anal. 7, 211–238 (1999)

    Article  MathSciNet  Google Scholar 

  10. Guo, K., Labate, D., Lim, W.-Q, Weiss, G., Wilson, E.: Wavelets with composite dilations. Electron. Res. Announc. Am. Math. Soc. 10, 78–87 (2004)

    Article  MathSciNet  Google Scholar 

  11. Guo, K., Labate, D., Lim, W.-Q, Weiss, G., Wilson, E.: The theory of wavelets with composite dilations. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 231–250. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  12. Guo, K., Labate, D., Lim, W.-Q, Weiss, G., Wilson, E.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20, 202–236 (2006)

    Article  MathSciNet  Google Scholar 

  13. Krishtal, I., Robinson, B., Weiss, G., Wilson, E.: Some simple Haar-type wavelets in higher dimensions. J. Geom. Anal. 17, 87–96 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kutyniok, G., Labate, D.: Introduction to shearlets. In: Kutyniok, G., Labate, D. (eds.) Multiscale Analysis for Multivariate Data, pp. 1–38. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  15. Labate, D., Weiss, G.: Continuous and discrete reproducing systems that arise from translations. Theory and applications of composite wavelets. In: Forster, B., Massopust, P. (eds.) Four Short Courses on Harmonic Analysis, pp. 87–130. Birkhäuser, Basel (2010)

    Chapter  Google Scholar 

  16. MacArthur, J.: Compatible dilations and wavelets for the wallpaper groups. Ph.D. thesis, Dalhousie University (in preparation)

    Google Scholar 

  17. MacArthur, J., Taylor, K.: Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17, 1109–1118 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mackey, G.: The Theory of Unitary Group Representations. University of Chicago Press, Chicago (1976)

    MATH  Google Scholar 

  19. Schattschneider, D.: The plane symmetry groups, their recognition and notation. Am. Math. Mon. 85, 439–450 (1978)

    Article  MathSciNet  Google Scholar 

  20. Taylor, K.: C-algebras of crystal groups. Oper. Theory: Adv. Appl. 41, 511–518 (1989)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merrill, K.D. (2018). Composite Dilations and Crystallographic Groups. In: Generalized Multiresolution Analyses. Applied and Numerical Harmonic Analysis(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99175-7_7

Download citation

Publish with us

Policies and ethics