Skip to main content

Synaptic Plasticity at Hippocampal Synapses: Experimental Background

  • Chapter
  • First Online:
Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Glutamatergic synapses in the hippocampus undergo activity-dependent bidirectional persistent changes in synaptic strength known as long-term potentiation (LTP) and long-term depression (LTD). This bidirectionality is important for the maintenance of equilibrium within a neuronal network, and distinct activity patterns need to be sensed by the synapse to initiate either LTP or LTD. Donald Hebb originally proposed that coincident firing of inputs onto a neuron or coincident firing of the presynaptic and postsynaptic neurons would strengthen synaptic connections. This theory is broadly correct for associative or Hebbian LTP and has been modified to include a description of LTD induction by uncorrelated firing patterns. However, it does not apply to non-associative or non-Hebbian synaptic plasticity which requires activity in only one neuron. In addition, these theories do not incorporate the role of homeostatic or heterosynaptic plasticity. Glutamatergic synapses in the hippocampus also undergo transient changes in synaptic strength known as short-term potentiation (STP) and short-term depression (STD), which operate on timescales of generally less than a second. Short-term changes in synaptic strength are important for the processing of information in the hippocampus, although their role in learning and memory may be primarily through their impact on long-term forms of synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994) Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 91:10049–10053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alle H, Jonas P, Geiger JR (2001) PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc Natl Acad Sci U S A 98:14708–14713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350

    Article  CAS  PubMed  Google Scholar 

  • Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, Siegelbaum SA (2016) Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351:aaa5694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bear MF, Cooper LN, Ebner FF (1987) A physiological-basis for a theory of synapse modification. Science 237:42–48

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity – orientation specificity and binocular interaction in visual-cortex. J Neurosci 2:32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260

    Article  CAS  PubMed  Google Scholar 

  • Buchanan KA, Mellor JR (2007) The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. J Physiol Lond 585:429–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrone J, O'Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:414–418

    Article  CAS  PubMed  Google Scholar 

  • Caillard O, Ben-Ari Y, Gaiarsa JL (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol 518(Pt 1):109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carta M, Lanore F, Rebola N, Szabo Z, Da Silva SV, Lourenco J, Verraes A, Nadler A, Schultz C, Blanchet C, Mulle C (2014) Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 81:787–799

    Article  CAS  PubMed  Google Scholar 

  • Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12:261–269

    Article  CAS  PubMed  Google Scholar 

  • Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:997–997, pg 461

    Article  CAS  Google Scholar 

  • Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol Lond 532:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie BR, Abraham WC (1992) Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron 9:79–84

    Article  CAS  PubMed  Google Scholar 

  • Cohen AS, Abraham WC (1996) Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J Neurophysiol 76:953–962

    Article  CAS  PubMed  Google Scholar 

  • Colino A, Malenka RC (1993) Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. J Neurophysiol 69:1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF (2002) Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296:1864–1869

    Article  CAS  PubMed  Google Scholar 

  • Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406

    Article  CAS  PubMed  Google Scholar 

  • Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991) GABA autoreceptors regulate the induction of LTP. Nature 349:609–611

    Article  CAS  PubMed  Google Scholar 

  • Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL, Isaac JTR (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28:873–886

    Article  CAS  PubMed  Google Scholar 

  • Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol Lond 507:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrunz LE, Stevens CF (1999) Response of hippocampal synapses to natural stimulation patterns. Neuron 22:157–166

    Article  CAS  PubMed  Google Scholar 

  • Doyere V, Srebro B, Laroche S (1997) Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J Neurophysiol 77:571–578

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature Hippocampus. J Neurosci 13:2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudman JT, Tsay D, Siegelbaum SA (2007) A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwiddie T, Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol 276:353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95:1620–1629

    Article  PubMed  Google Scholar 

  • Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, Rossi P, D'Angelo E (2005) Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci 25:4813–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  CAS  PubMed  Google Scholar 

  • Gisabella B, Rowan MJ, Anwyl R (2003) Mechanisms underlying the inhibition of long-term potentiation by preconditioning stimulation in the hippocampus in vitro. Neuroscience 121:297–305

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golowasch J, Casey M, Abbott LF, Marder E (1999) Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11:1079–1096

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Munoz MD, Delgado-Garcia JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundlfinger A, Leibold C, Gebert K, Moisel M, Schmitz D, Kempter R (2007) Differential modulation of short-term synaptic dynamics by long-term potentiation at mouse hippocampal mossy fibre synapses. J Physiol 585:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel C, Artola A, Singer W (1996) Different threshold levels of postsynaptic [Ca2+]i have to be reached to induce LTP and LTD in neocortical pyramidal cells. J Physiol Paris 90:317–319

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Artola A, Singer W (1997) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9:2309–2322

    Article  CAS  PubMed  Google Scholar 

  • Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491:599–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris EW, Cotman CW (1986) Long-term potentiation of Guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70:132–137

    Article  CAS  PubMed  Google Scholar 

  • Hebb D (1949) The organisation of behaviour. Wiley, New York

    Google Scholar 

  • Henze DA, Wittner L, Buzsaki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5:790–795

    Article  CAS  PubMed  Google Scholar 

  • Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Colino A, Selig DK, Malenka RC (1992) The influence of prior synaptic activity on the induction of long-term potentiation. Science 255:730–733

    Article  CAS  PubMed  Google Scholar 

  • Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal Ca1 neurons during a cholinergically induced rhythmic state. Nature 364:723–725

    Article  CAS  PubMed  Google Scholar 

  • Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic Theta-oscillation in Ca1 in-vitro. Neuron 15:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–434

    Article  CAS  PubMed  Google Scholar 

  • Isaac JT, Buchanan KA, Muller RU, Mellor JR (2009) Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci 29:6840–6850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24:9847–9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10:1830–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507–513

    Article  PubMed  Google Scholar 

  • Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hubener M (2013) Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80:327–334

    Article  CAS  PubMed  Google Scholar 

  • Keller DX, Franks KM, Bartol TM Jr, Sejnowski TJ (2008) Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One 3:e2045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemp N, McQueen J, Faulkes S, Bashir ZI (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12:360–366

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Poo MM (2004) Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648–650

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Manabe T, Takahashi T (1999) Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibre-CA3 synapse. Eur J Neurosci 11:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Kohl MM, Shipton OA, Deacon RM, Rawlins JN, Deisseroth K, Paulsen O (2011) Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nat Neurosci 14:1413–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwag J, Paulsen O (2009) The timing of external input controls the sign of plasticity at local synapses. Nat Neurosci 12:1219–1221

    Article  CAS  PubMed  Google Scholar 

  • Kwon HB, Castillo PE (2008) Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 57:108–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laezza F, Doherty JJ, Dingledine R (1999) Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285:1411–1414

    Article  CAS  PubMed  Google Scholar 

  • Lamsa K, Heeroma JH, Kullmann DM (2005) Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci 8:916–924

    Article  CAS  PubMed  Google Scholar 

  • Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM (2007) Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315:1262–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ et al (2008) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta-frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407

    Article  CAS  PubMed  Google Scholar 

  • Lei S, McBain CJ (2002) Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33:921–933

    Article  CAS  PubMed  Google Scholar 

  • Lei S, Pelkey KA, Topolnik L, Congar P, Lacaille JC, McBain CJ (2003) Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23:9786–9795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245

    Article  CAS  PubMed  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307

    Article  CAS  PubMed  Google Scholar 

  • Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343:857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri G, Toth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1370

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524(Pt 1):91–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760

    Article  CAS  PubMed  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  CAS  PubMed  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18:295–305

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157:277–293

    Article  CAS  PubMed  Google Scholar 

  • Mellor J, Nicoll RA (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4:125–126

    Article  CAS  PubMed  Google Scholar 

  • Meredith RM, Floyer-Lea AM, Paulsen O (2003) Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. J Neurosci 23:11142–11146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KD (1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17:371–374

    Article  CAS  PubMed  Google Scholar 

  • Mistry R, Dennis S, Frerking M, Mellor JR (2011) Dentate gyrus granule cell firing patterns can induce mossy fiber long-term potentiation in vitro. Hippocampus 21:1157–1168

    Article  PubMed  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, Ap5. Nature 319:774–776

    Article  CAS  PubMed  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26:11001–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo M, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588

    Article  CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  • O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078

    Article  PubMed  Google Scholar 

  • Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 10:2385–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike FG, Meredith RM, Olding AWA, Paulsen O (1999) Postsynaptic bursting is essential for ‘Hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol Lond 518:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Carta M, Lanore F, Blanchet C, Mulle C (2011) NMDA receptor-dependent metaplasticity at hippocampal mossy fiber synapses. Nat Neurosci 14:691–693

    Article  CAS  PubMed  Google Scholar 

  • Regehr WG, Tank DW (1991) The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7:451–459

    Article  CAS  PubMed  Google Scholar 

  • Rose GM, Dunwiddie TV (1986) Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69:244–248

    Article  CAS  PubMed  Google Scholar 

  • Sadowski JH, Jones MW, Mellor JR (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14:1916–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 93:13304–13309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz D, Mellor J, Breustedt J, Nicoll RA (2003) Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, Huganir RL, Lee HK, Kirkwood A (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield ME, Dombeck DA (2015) Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517:200–204

    Article  CAS  PubMed  Google Scholar 

  • Shew T, Yip S, Sastry BR (2000) Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 83:3388–3401

    Article  CAS  PubMed  Google Scholar 

  • Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol 93:1069–1073

    Article  PubMed  Google Scholar 

  • Silver RA, Traynelis SF, Cull-Candy SG (1992) Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355:163–166

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Hausser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654

    Article  PubMed  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action-potential invasion and calcium influx into hippocampal Ca1 dendrites. Science 268:297–300

    Article  CAS  PubMed  Google Scholar 

  • Tigaret CM, Olivo V, Sadowski JH, Ashby MC, Mellor JR (2016) Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity. Nat Commun 7:10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonnesen J, Katona G, Rozsa B, Nagerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Janz R, Südhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837–845

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 365:188

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Wigstrom H, Gustafsson B (1983) Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301:603–604

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg GM, Wang SSH (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26:6610–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity. Neuron 39:807–820

    Article  CAS  PubMed  Google Scholar 

  • Wozny C, Maier N, Schmitz D, Behr J (2008) Two different forms of long-term potentiation at CA1-subiculum synapses. J Physiol 586:2725–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you to Tim Bliss for critical reading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Mellor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mellor, J. (2018). Synaptic Plasticity at Hippocampal Synapses: Experimental Background. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_6

Download citation

Publish with us

Policies and ethics