Skip to main content

Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach

  • Chapter
  • First Online:
Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 1356 Accesses

Abstract

Multiple stimulation protocols using firing rate and spike-timing correlations have been found to be effective in changing synaptic efficacy by inducing long-term potentiation or depression. In many of those protocols, increases in postsynaptic calcium concentration have been shown to play a crucial role. To which extent the plasticity outcome can be explained by the dynamics of the postsynaptic calcium alone remains unclear. Here, we discuss a minimal calcium-based model of a synapse in which potentiation and depression mechanisms are triggered by calcium. We illustrate that this model gives rise to a large diversity of spike timing-dependent plasticity curves, most of which have been observed experimentally in different systems. It accounts quantitatively for plasticity outcomes evoked by protocols involving patterns with variable spike timing and firing rate in hippocampus and neocortex. Furthermore, we use the model to predict memory decay times and plasticity in the presence of uncorrelated Poisson firing. The calcium model provides a mechanistic understanding of how various stimulation protocols provoke specific synaptic changes through the dynamics of calcium concentration and thresholds implementing in simplified fashion protein signaling cascades, leading to long-term potentiation and long-term depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI, Gibb L, Huerta R, Rabinovich M (2003) Biophysical model of synaptic plasticity dynamics. Biol Cybern 89(3):214–26

    Article  PubMed  Google Scholar 

  • Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience 145(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330(6149):649–652

    Article  CAS  PubMed  Google Scholar 

  • Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16(2):79–97

    Article  PubMed  Google Scholar 

  • Bagal AA, Kao JPY, Tang C-M, Thompson SM (2005) Long-term potentiation of exogenous glutamate responses at single dendritic spines. Proc Natl Acad Sci USA 102(40):14434–14439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bear MF, Press WA, Connors BW (1992) Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J Neurophysiol 67(4):841–851

    Article  CAS  PubMed  Google Scholar 

  • Bell C, Han V, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–81

    Article  CAS  PubMed  Google Scholar 

  • Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26(16):4166–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi G, Poo M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi GQ, Wang HX (2002) Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol Behav 77(4–5):551–555

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss T, Collingridge G (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss T, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ (2007) Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol 97(1):375–386

    Article  PubMed  Google Scholar 

  • Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning rule for dendritic integration in rat ca1 pyramidal neurons. J Physiol 586(3):779–793

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15(7 Pt 2):5324–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13(3):344–352

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutsuridis V (2011) GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model. Neural Netw 24(1):29–42

    Article  PubMed  Google Scholar 

  • Cutsuridis V (2012) Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition. Cogn Neurody 6(5):421–441

    Article  Google Scholar 

  • Cutsuridis V (2013) Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity. Hippocampus 23(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22(7):1597–1621

    Article  CAS  PubMed  Google Scholar 

  • Delgado JY, Gómez-González JF, Desai NS (2010) Pyramidal neuron conductance state gates spike-timing-dependent plasticity. J Neurosci 30(47):15713–15725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2(12):1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879):433–438

    Article  CAS  PubMed  Google Scholar 

  • Froemke R, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol 95(3):1620–1629

    Article  PubMed  Google Scholar 

  • Gerkin RC, Bi G-Q, Rubin JE (2010) Hippocampal microcircuits: a computational modeler’s resource book, vol 5. Springer series in computational neuroscience. Springer, New York

    Chapter  Google Scholar 

  • Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3(11):2299–2323

    Article  CAS  Google Scholar 

  • Graupner M, Brunel N (2010) Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Front Comput Neurosci 4

    Google Scholar 

  • Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci USA 109(10):3991–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson B, Wigström H, Abraham WC, Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7(3):774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm JO, Langdon RB, Sur M (1991) Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351(6327):568–570

    Article  CAS  PubMed  Google Scholar 

  • Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491(7425):599–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H, Kirkwood A (2015) Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88:528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb D (1949) The organization of behavior: a neurophsychological theory. Wiley, New York

    Google Scholar 

  • Higgins D, Graupner M, Brunel N (2014) Memory maintenance in synapses with calcium-based plasticity in the presence of background activity. PLoS Comput Biol 10(10):e1003834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357(6375):244–246

    Article  CAS  PubMed  Google Scholar 

  • Jahr C, Stevens C (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10(6):1830–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Varga Z, Sakmann B, Konnerth A (2014) Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo. Proc Natl Acad Sci USA 111:9277–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88(1):507–513

    Article  PubMed  Google Scholar 

  • Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87(5–6):373–382

    Article  PubMed  Google Scholar 

  • Kato HK, Watabe AM, Manabe T (2009) Non-Hebbian synaptic plasticity induced by repetitive postsynaptic action potentials. J Neurosci 29(36):11153–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95(16):9596–9601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons. J Neurosci 20(5):1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Mehta MR (2011) Frequency-dependent changes in NMDAR-dependent synaptic plasticity. Front Comput Neurosci 5:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26(41):10420–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4):791–797

    Article  CAS  PubMed  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305(5936):719–721

    Article  CAS  PubMed  Google Scholar 

  • Magee J, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213

    Article  CAS  PubMed  Google Scholar 

  • Majewska A, Brown E, Ross J, Yuste R (2000) Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci 20(5):1722–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242(4875):81–84

    Article  CAS  PubMed  Google Scholar 

  • Markram H, J. Lübke, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Kim S, Guzman SJ, Jonas P (2016) Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nat Commun 7:11552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur J Neurosci 14(4):701–708

    Article  CAS  PubMed  Google Scholar 

  • Mooney R, Madison DV, Shatz CJ (1993) Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10(5):815–825

    Article  CAS  PubMed  Google Scholar 

  • Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    Article  CAS  PubMed  Google Scholar 

  • Müllner FE, Wierenga CJ, Bonhoeffer T (2015) Precision of inhibition: dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time. Neuron 87(3):576–589

    Article  PubMed  CAS  Google Scholar 

  • Nabavi S, Kessels HW, Alfonso S, Aow J, Fox R, Malinow R (2013) Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci USA 110(10):4027–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neveu D, Zucker RS (1996) Long-lasting potentiation and depression without presynaptic activity. J Neurophysiol 75(5):2157–2160

    Article  CAS  PubMed  Google Scholar 

  • Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci 24(7):1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26(43):11001–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408(6812):584–588

    Article  CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DH, Wittenberg GM, Wang SS-H (2005) Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J Neurophysiol 94(2):1565–1573

    Article  PubMed  Google Scholar 

  • O’Connor DH, Wittenberg GM, Wang SS-H (2005) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 102(27):9679–9684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paille V, Fino E, Du K, Morera-Herreras T, Perez S, Kotaleski JH, Venance L (2013) GABAergic circuits control spike-timing-dependent plasticity. J Neurosci 33(22):9353–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlak V, Kerr JND (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28(10):2435–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen C, Malenka R, Nicoll R, Hopfield J (1998) All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci USA 95(8):4732–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister J-P, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risken H (1996) The Fokker-Planck equation. Springer.

    Google Scholar 

  • Rubin JE, Gerkin RC, Bi G-Q, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93(5):2600–2613

    Article  PubMed  Google Scholar 

  • Rudolph M, Pelletier JG, Paré D, Destexhe A (2005) Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol 94(4):2805–2821

    Article  PubMed  Google Scholar 

  • Sabatini B, Svoboda K (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408(6812):589–593

    Article  CAS  PubMed  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33(3):439–452

    Article  CAS  PubMed  Google Scholar 

  • Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1(2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, Huganir RL, Lee H-K, Kirkwood A (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55(6):919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shouval HZ, Kalantzis G (2005) Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J Neurophysiol 93(2):1069–1073

    Article  PubMed  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99(16):10831–10836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shouval HZ, Wang SS-H, Wittenberg GM (2010) Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci 4(19)

    Google Scholar 

  • Silver IA, Erecińska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95(5):837–866

    Article  CAS  PubMed  Google Scholar 

  • Sjöström P, Turrigiano G, Nelson S (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6):1149–1164

    Article  PubMed  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39(4):641–654

    Article  PubMed  Google Scholar 

  • Tigaret CM, Olivo V, Sadowski JHLP, Ashby MC, Mellor JR (2016) Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity. Nat Commun 7:10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada M, Aihara T, Kobayashi Y, Shimazaki H (2005) Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15(1):104–109

    Article  PubMed  Google Scholar 

  • Wang H-X, Gerkin RC, Nauen DW, Bi G-Q (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 8(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3(12):1266–1273

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg GM, Wang SS-H (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26(24):6610–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Tang Y, Zucker R (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81(2):781–787

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19(6):1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhabotinsky AM (2000) Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Biophys J 79(5):2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-C, Lau P-M, Bi G-Q (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci USA 106(31):13028–13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Tao HW, Ming Poo M (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300(5627):1953–1957

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Graupner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graupner, M., Brunel, N. (2018). Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_17

Download citation

Publish with us

Policies and ethics