Skip to main content

Physical and Biological Processes Controlling Soil C Dynamics

  • Chapter
  • First Online:
Book cover Sustainable Agriculture Reviews 33

Abstract

Globally, land use change and management have declined soil organic carbon (SOC), thus emitting more CO2 contributing to global warming. Here we review factors that control the fate of soil organic carbon. We found that dry tropical soils are considerably away from carbon saturation, and thus have the potential for high carbon sequestration, if managed properly. Integrated indicators have been set up, such as relative availability of inorganic nitrogen pools, carbon management index, macro-aggregate water stability and metabolic quotient. For example, the relative, rather than absolute, availability of inorganic nitrogen pools has been found associated with resource conservation mechanisms in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren GI, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Article  Google Scholar 

  • Al-Kaisi MM, Yin X (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J Environ Qual 34:437–445

    Article  CAS  PubMed  Google Scholar 

  • Al-Kaisi MM, Kruse ML, Sawyer JE (2008) Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn–soybean rotation. J Environ Qual 37:325–332

    Article  CAS  PubMed  Google Scholar 

  • Alston JM, Beddow JM, Pardey PG (2009) Agricultural research, productivity, and food prices in the long run. Science 325:1209–1210

    Article  CAS  PubMed  Google Scholar 

  • Alvarez R, Dıaz RA, Barbero N, Santanatoglia OJ, Blotta L (1995) Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil Tillage Res 33:17–28

    Article  Google Scholar 

  • Araujo ASF, Santos VB, Monteiro RTR (2008) Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauı state, Brazil. Eur J Soil Biol 44:225–230

    Article  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci 107:4618–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Batjes NH, Sombroek WG (1997) Possibilities for carbon sequestration in tropical and subtropical soils. Glob Chang Biol 3:161–173

    Article  Google Scholar 

  • Beare MH (1997) Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soils. In: Brussaard L, Ferrera-Cerrato R (eds) Soil ecology in sustainable agricultural systems. CRC/Lewis Publishers, Boca Raton, pp 37–70

    Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994) Water-stable aggregates and organic matter fractions in conventional-tillage and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Belay-Tedla A, Zhou XH, Su B, Wan SQ, Luo YQ (2009) Labile, recalcitrant and microbial carbon and nitrogen pools of a tall grass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol Biochem 41:110–116

    Article  CAS  Google Scholar 

  • Bijlsma RJ, Lambers H, Kooijman SALM (2000) A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium-nitrate interactions. Plant Soil 220:49–69

    Article  CAS  Google Scholar 

  • Blair GJ, Lefroy RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Blair N, Faulkner R, Till A, Poulton P (2006) Long-term management impacts on soil C, N and physical fertility: part I: Broadbalk experiment. Soil Tillage Res 91:30–38

    Article  Google Scholar 

  • Bohme L, Langer U, Bohme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Pearson Education Inc, Upper Saddle River

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Buchanan M, King LD (1992) Seasonal fluctuations in soil microbial biomass carbon, phosphorus, and activity in no-till and reduced-chemical-input maize agroecosystems. Biol Fertil Soils 13:211–217

    Article  CAS  Google Scholar 

  • Caldwell BA, Griffiths RP, Sollins P (1999) Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils. Soil Biol Biochem 31:1603–1608

    Article  CAS  Google Scholar 

  • Carpenter-Boggs L, Kennedy AC, Reganold JP (2000) Organic and biodynamic management: effects on soil biology. Soil Sci Soc Am J 64:1651–1659

    Article  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Carter MR (2002) Soil quality sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron J 94:38–47

    Article  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Chantigny MH, Angers DA, Rochette P (2002) Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biol Biochem 34:509–517

    Article  CAS  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chenu C (1989) Influence of a fungal polysaccharide, scleroglucan, on clay microstructures. Soil Biol Biochem 21:299–305

    Article  CAS  Google Scholar 

  • Christensen BT (1996) Carbon in primary and secondary organomineral complexes. In: Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp 97–165

    Google Scholar 

  • Chu H, Lin XG, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976

    Article  CAS  Google Scholar 

  • Collins HP, Rasmussen PE, Douglas CL (1992) Crop rotation and residue management effects on soil carbon and microbial dynamic. Soil Sci Soc Am J 56:783–788

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook BD, Allan DL (1992) Dissolved organic carbon in old field soils: compositional changes during the biodegradation of soil organic matter. Soil Biol Biochem 24:595–600

    Article  CAS  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Lips H, Martins-Loução MA (2003) Nitrogen use efficiency by a slow-growing species as affected by CO 2 levels, root temperature, N source and availability. J Plant Physiol 160:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Currey PM, Johnson D, Sheppard LJ, Leith ID, Toberman H, René VDW, Artz RR (2010) Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland. Glob Chang Biol 16:2307–2321

    Article  Google Scholar 

  • De Gryze S, Lee J, Ogle S, Paustian K, Six J (2011) Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agric Ecosyst Environ 144:150–158

    Article  CAS  Google Scholar 

  • de la Horra AM, Conti ME, Palma RM (2003) Beta-glucosidase and proteases activities as affected by long-term management practices in a typic argiudoll soil. Commun Soil Sci Plant Anal 34:2395–2404

    Article  CAS  Google Scholar 

  • Dendoncker N, Van Wesemael B, Rounsevell MD, Roelandt C, Lettens S (2004) Belgium’s CO2 mitigation potential under improved cropland management. Agric Ecosyst Environ 103:101–116

    Article  Google Scholar 

  • Ding X, Han X, Liang Y, Qiao Y, Li L, Li N (2012) Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil Tillage Res 122:36–41

    Article  Google Scholar 

  • Dominy CS, Haynes RJ, van Antwerpen R (2002) Loss of soil organic matter and related soil properties under long-term sugarcane production on two contrasting soils. Biol Fertil Soils 36:350–356

    Article  CAS  Google Scholar 

  • Ekenler M, Tabatabai MA (2004) Arylamidase and amidohydrolases in soils as affected by liming and tillage systems. Soil Tillage Res 77:157–168

    Article  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sc Soc Am J 50:627–633

    Article  Google Scholar 

  • Elliott ET, Cambardella CA (1991) Physical separation of soil organic matter. Agric Ecosyst Environ 34:407–419

    Article  Google Scholar 

  • Embacher A, Zsolnay A, Gattinger A, Munch JC (2008) The dynamics of water extractable organic matter (WEOM) in common arable top soils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem. Geoderma 148:63–69

    Article  CAS  Google Scholar 

  • Epron D, Farque L, Lucot É, Badot P-M (1999) Soil CO efflux in a beech forest: dependence on soil temperature and soil water content. Ann For Sci 56(3):221–226

    Article  Google Scholar 

  • Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microb Ecol 61:26–37

    Article  CAS  Google Scholar 

  • Eswaran H, Vandenberg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • FAO (2000) Land resource potential and constraints at regional and country levels, World Soil Resources Report 90. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • FAO (2001) Soil carbon sequestration for improved land management, World Soil Resources Reports 96, FAO, Rome

    Google Scholar 

  • Flavel TC, Murphy DV (2006) Carbon and nitrogen mineralization rates after application of organic amendments to soil. J Environ Qual 35:183–193

    Article  CAS  PubMed  Google Scholar 

  • Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • Franzluebbers AJ, Hons FM, Zuberer DA (1995) Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Tillage Res 34:41–60

    Article  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Gale WJ, Cambardella CA, Bailey TB (2000) Surface residue and root-derived carbon in stable and unstable aggregates. Soil Sci Soc Am J 64:196–201

    Article  CAS  Google Scholar 

  • Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern indo-gangetic plains. Geoderma 153:304–311

    Article  CAS  Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S (2011) Knowledge gaps in soil carbon and nitrogen interactions–from molecular to global scale. Soil Biol Biochem 43:702–717

    Article  CAS  Google Scholar 

  • Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243

    Article  CAS  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Gomez-Casanovas N, Matamala R, Cook DR, Gonzalez-Meler MA (2012) Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands. Glob Chang Biol 18:2532–2545

    Article  Google Scholar 

  • Gong W, Yan X, Wang J, Hu T, Gong Y (2009) Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma 149:318–324

    Article  CAS  Google Scholar 

  • Goyal S, Chander K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200

    Article  CAS  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreall CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Grisi B, Grace C, Brookes PC, Benedetti A, Dell’Abate MT (1998) Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biol Biochem 30:1309–1315

    Article  CAS  Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–210

    Article  CAS  Google Scholar 

  • Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20:777–786

    Article  CAS  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Hassink J, Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61:131–139

    Article  CAS  Google Scholar 

  • Hati KM, Swarup A, Mishra B, Manna MC, Wanjari RH, Mandal KG, Misra AK (2008) Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma 148:173–179

    Article  CAS  Google Scholar 

  • Hattori T (1988) Soil aggregates as microhabitats of microorganisms. Rep Inst Agric Res Tohoku Univ 37:23–36

    Google Scholar 

  • Haynes RJ (1999) Size and activity of the soil microbial biomass under grass and arable management. Biol Fertil Soils 30:210–216

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • He Y, Xu Z, Chen C, Burton J, Ma Q, Ge Y, Xu J (2008) Using light fraction and macroaggregate associated organic matters as early indicators for management-induced changes in soil chemical and biological properties in adjacent native and plantation forests of subtropical Australia. Geoderma 147:116–125

    Article  CAS  Google Scholar 

  • Hernández-Hernández R, López-Hernández D (2002) Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage. Soil Biol Biochem 34:1563–1570

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6:196–210

    Article  PubMed  Google Scholar 

  • Högberg P, Löfvenius MO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. For Ecol Manag 257:1764–1767

    Article  Google Scholar 

  • Houghton RA, Woodwell GM (1989) Global climatic change. Sci Am U S 260(4):36–44

    Article  CAS  Google Scholar 

  • Huang ZQ, Xu ZH, Chen CR (2008) Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Appl Soil Ecol 40:229–239

    Article  Google Scholar 

  • Hueso S, Garcia C, Hernandez T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173

    Article  CAS  Google Scholar 

  • Insam H (1990) Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22:525–532

    Article  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:177–188

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J, Ronggui H, Lijun D, Lan L, Shan L, Tao C, Leilei R (2008) Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol Biochem 40:2324–2333

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ayanaba A (1977) Decomposition of carbon-14 labeled plant material under tropical conditions. Soil Sci Soc Am J 41:912–915

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Mercel Decker, Inc, New York, pp 415–471

    Google Scholar 

  • Jha PB, Singh JS, Kashyap AK (1996) Dynamics of viable nitrifier community and nutrient availability in dry tropical forest habitat as affected by cultivation and soil texture. Plant Soil 180:277–285

    Article  CAS  Google Scholar 

  • Jimenez M, Horra AM, Pruzzo L, Palma RM (2002) Soil quality: a new index based on microbiological and biochemical parameters. Biol Fertil Soil 35:302–306

    Article  CAS  Google Scholar 

  • Jinbo Z, Changchun S, Wenyan Y (2007) Effects of cultivation on soil microbiological properties in a freshwater marsh soil in Northeast China. Soil Tillage Res 93:231–235

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 2:423–436

    Article  Google Scholar 

  • Joergenson RG, Meyer B, Mueller T (1994) Time course of soil microbial biomass under wheat: a one year field study. Soil Biol Biochem 26:987–994

    Article  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2009) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13

    Article  CAS  Google Scholar 

  • Kay BD (1998) Soil structure and organic carbon: a review. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 169–197

    Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2008) An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics and biology. J Plant Nutr Soil Sci 171:5–13

    Article  CAS  Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085

    Article  CAS  Google Scholar 

  • Kong X, Dao TH, Qin J, Qin H, Li C, Zhang F (2009) Effects of soil texture and land use interactions on organic carbon in soils in North China cities’ urban fringe. Geoderma 154:86–92

    Article  CAS  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J (eds) Soil biochemistry. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Lagomarsino A, Grego S, Marhan S, Moscatelli MC, Kandeler E (2009) Soil management modifies micro-scale abundance and function of soil microorganisms in a Mediterranean ecosystem. Eur J Soil Sci 60:2–12

    Article  CAS  Google Scholar 

  • Laird DA, Martens DA, Kingery WL (2001) Nature of clay-humic complexes in an agricultural soil. Soil Sci Soc Am J 65:1413–1418

    Article  CAS  Google Scholar 

  • Lal R (2004a) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956

    Article  CAS  Google Scholar 

  • Larkin RP, Honeycutt CW, Griffin TS, Olanya OM, Halloran JM, He Z (2011) Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101:58–67

    Article  PubMed  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lepsch IF, Menk JRF, Oliveira JD (1994) Carbon storage and other properties of soils under agriculture and natural vegetation in Sao Paulo State, Brazil. Soil Use Manag 10:34–42

    Article  Google Scholar 

  • Lichtfouse E (1997) Heterogeneous turnover of molecular organic substances from crop soils as revealed by 13C labeling at natural abundance with Zea mays. Naturwissenschaften 84:23–25

    Article  CAS  Google Scholar 

  • Liu X, Herbert SJ, Hashemi AM, Zhang X, Ding G (2005) Effects of agricultural management on soil organic matter and carbon transformation – a review. Plant Soil Environ 52:531–543

    Article  Google Scholar 

  • Hui Liu, Ping Zhao, Ping Lu, Yue-Si Wang, Yong-Biao Lin, Xing-Quan Rao (2008) Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agric Ecosyst Environ 124(1–2):125–135

    Google Scholar 

  • Lou Y, Wang J, Liang W (2011) Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, Northeast China. Catena 87:386–390

    Article  CAS  Google Scholar 

  • Lucas ST, D’Angeloa EM, Williams MA (2014) Improving soil structure by promoting fungal abundance with organic soil amendments. Appl Soil Ecol 75:13–23

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao LE (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13:2509–2537

    Article  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Malik MA, Khan KS, Marschner P, Ali S (2013) Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biol Fertil Soils 49:415–425

    Article  CAS  Google Scholar 

  • Marinari S, Mascinadaro G, Ceccanti B, Grego S (2000) Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour Technol 72:9–17

    Article  CAS  Google Scholar 

  • Marschner AD, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Martens DA (2000) Management and crop residue influence soil aggregate stability. J Environ Qual 29:723–727

    Article  CAS  Google Scholar 

  • Martens DA, Frankenberger WT Jr (1992) Modification of infiltration rates in an organic-amended irrigated soil. J Agron 84:707–717

    Article  Google Scholar 

  • Marx MC, Kandeler E, Wood M, Wermbter N, Jarvis SC (2005) Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol Biochem 37:35–48

    Article  CAS  Google Scholar 

  • Matthews E (1997) Global litter production, pools, and turnover times: estimates from measurement data and regression models. J Geophys Res 102:18771–18800

    Article  Google Scholar 

  • McLauchlan KK (2006) Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma 136:289–299

    Article  CAS  Google Scholar 

  • McLauchlan KK, Hobbie SE, Post WM (2006) Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecol Appl 16:143–153

    Article  PubMed  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B 57:1–11

    Article  Google Scholar 

  • Mikha MM, Rice CW (2004) Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci Soc Am J 68:809–816

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: molecular biology and physiology. Kluwer Academic Publishers, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2009) Denitrifier community dynamics in soil aggregates under permanent grassland and arable cropping systems. Soil Sci Soc Am J 73:1843–1851

    Article  CAS  Google Scholar 

  • Min K, Kang H, Lee D (2011) Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biol Biochem 43:2461–2469

    Article  CAS  Google Scholar 

  • Moeskops B, Sukristiyonubowo Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, De Neve S (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl Soil Ecol 45:112–120

    Article  Google Scholar 

  • Mooney HA, Vitousek PM, Matson PA (1987) Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238:926–932

    Article  CAS  PubMed  Google Scholar 

  • Moraes JL, Cerri CC, Melillo JM, Kicklighter D, Neill C, Steudler PA, Skole DL (1995) Soil carbon stocks of the Brazilian Amazon basin. Soil Sci Soc Am J 59:244–247

    Article  CAS  Google Scholar 

  • Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119

    Article  Google Scholar 

  • Mummey DL, Rillig MC, Six J (2006) Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biol Biochem 38:1608–1614

    Article  CAS  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Nardi S, Morari F, Berti A, Tosoni M, Giardini L (2004) Soil organic matter properties after 40 years of different use of organic and mineral fertilizers. Eur J Agron 21:357–367

    Article  Google Scholar 

  • Nottingham AT, Turner BL, Chamberlain PM, Stott AW, Tanner EVJ (2012) Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry 111:219–237

    Article  CAS  Google Scholar 

  • Nyamangara J, Piha MI, Kirchmann H (1999) Interactions of aerobically decomposed cattle manure and nitrogen fertilizer applied to soil. Nutr Cycl Agroecosyst 54:183–188

    Article  Google Scholar 

  • Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121

    Article  Google Scholar 

  • Pan G, Smith P, Pan W (2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric Ecosyst Environ 129:344–348

    Article  Google Scholar 

  • Parham JA, Deng SP, Raun WR, Johnson GV (2002) Long-term cattle manure application in soil – I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol Fertil Soils 35:328–337

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Pascual JA, Pascual G, Garcıa JA (1997) Changes in the microbial activity of an arid soil amended with urban organic wastes. Biol Fertil Soils 24:429–434

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego, pp 131–146

    Book  Google Scholar 

  • Paul EA, Follett RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239–256

    Article  CAS  Google Scholar 

  • Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) CO2 mitigation by agriculture: an overview. Clim Chang 40:135–162

    Article  CAS  Google Scholar 

  • Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Article  CAS  Google Scholar 

  • Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: Nutrient acquisition by plants. Springer, Berlin/Heidelberg, pp 277–310

    Chapter  Google Scholar 

  • Puget P, Chenu C, Balesdent J (1995) Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci 46:449–459

    Article  Google Scholar 

  • Pulleman M, Jongmans A, Marinissen J, Bouma J (2003) Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands. Soil Use Manag 19:157–165

    Article  Google Scholar 

  • Purakayastha TJ, Rudrappa L, Singh D, Swarup A, Bhadraray S (2008) Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize- wheat.-cowpea cropping system. Geoderma 144:370–378

    Article  CAS  Google Scholar 

  • Raghubanshi AS (1992) Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biol Biochem 24:145–150

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  • Reganold JP, Elliott LF, Unger YL (1987) Long-term effects of organic and conventional farming on soil erosion. Nature 330:370–372

    Article  Google Scholar 

  • Reichstein M, Tenhunen JD, Roupsard O, Ourcival J, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 10:999–1017

    Article  Google Scholar 

  • Ren LY, Xiang L, Rong SQ, Chun XUV (2013) Enzyme activity in water stable soil aggregates as affected by long term application of organic manure and chemical fertilizer. Pedosphere 23:111–119

    Article  Google Scholar 

  • Rice CW (2002) Storing carbon in soil: why and how? Geotimes 47:14–17

    Google Scholar 

  • Rillig MC (2005) A connection between fungal hydrophobins and soil water repellency? Pedobiologia 49:395–399

    Article  CAS  Google Scholar 

  • Rilling MC, Steinberg PD (2002) Glomalin production by an arbuscularmycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374

    Article  Google Scholar 

  • Rosell RA, Galantini JA, Suñer LG (2000) Long-term crop rotation effects on organic carbon, nitrogen, and phosphorus in haplustoll soil fractions. Arid Soil Res Rehabil 14:309–315

    Article  CAS  Google Scholar 

  • Rosenberg NJ, Izaurralde RC, Malone EL (1999) Carbon sequestration in soils: monitoring and beyond. Battelle Press, Columbus

    Google Scholar 

  • Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141

    Article  CAS  Google Scholar 

  • Rudrappa L, Purakayastha T, Singh D, Bhadraray S (2006) Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Tillage Res 88:180–192

    Article  Google Scholar 

  • Ryals R, Silver WL (2013) Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecol Appl 23:46–69

    Article  PubMed  Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res Atmos 102:28871–28883

    Article  CAS  Google Scholar 

  • Ryan J, Masri S, Singh M (2009) Seasonal changes in soil organic matter and biomass and labile forms of carbon as influenced by crop rotations. Commun Soil Sci Plant Anal 40:188–199

    Article  CAS  Google Scholar 

  • Saison C, Degrange V, Oliver R, Millard P, Commeaux C, Montange D, Le Roux X (2006) Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ Microbiol 8:247–257

    Article  CAS  PubMed  Google Scholar 

  • Saroa GS, Lal R (2001) Mulching effect on aggregation and carbon sequestration in a Miamian soil in Central Ohio. Land Degrad Dev 14:481–493

    Article  Google Scholar 

  • Sayer JA, Maginnis S, Laurie M (2007) Forests in landscapes: ecosystem approaches to sustainability. Routledge, London

    Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1:77–91

    Article  Google Scholar 

  • Schlesinger WH (1995) An overview of the carbon cycle. In: Soils and global change. CRC Press, Boca Raton, pp 9–25

    Google Scholar 

  • Schlesinger WH, Andrews JW (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Jannssens IA, Kleber M, Knögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer M (1991) Soil organic matter-the next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  • Scurlock JMO, Hall DO (1998) The global carbon sink: a grassland perspective. Glob Chang Biol 4:229–233

    Article  Google Scholar 

  • Shang C, Tiessen H (1997) Organic matter lability in a tropical oxisol: evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Sci 162:795–807

    Article  CAS  Google Scholar 

  • Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecol Appl 11:1206–1223

    Google Scholar 

  • Silveira ML, Comerford NB, Reddy KR, Cooper WT, El-Rifai H (2008) Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 144:405–414

    Article  CAS  Google Scholar 

  • Šimon T (2008) The influence of long-term organic and mineral fertilization on soil organic matter. Soil Water Res 3:41–51

    Article  Google Scholar 

  • Singh H, Singh KP (1993) Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Biol Fertil Soils 16:275–281

    Article  CAS  Google Scholar 

  • Singh S, Singh JS (1996) Water-stable aggregates and associated organic matter in forest, savanna, and cropland soils of a seasonally dry tropical region, India. Biol Fertil Soils 22:76–82

    Article  Google Scholar 

  • Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forests and savanna. Nature 338:499–500

    Article  Google Scholar 

  • Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS (2015) Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng 77:324–347

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C-sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Carpentier A, van Kessel C, Merckx R, Harris D, Horwath WR, Luscher A (2001) Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil 234:27–36

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, Inc, New York, pp 357–396

    Google Scholar 

  • Smith OH, Petersen GW, Needelman BA (2000) Environmental indicators of agroecosystems. Adv Agron 69:75–97

    Article  CAS  Google Scholar 

  • Sodhi GPS, Beri V, Benbi DK (2009) Using carbon management index to assess the impact of compost application on changes in soil carbon after ten years of rice-wheat cropping. Commun Soil Sci Plant Anal 40:3491–3502

    Article  CAS  Google Scholar 

  • Sombroek WG, Nachtergaele FO, Hebel A (1993) Amounts, dynam-ics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–425

    Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Srivastava SC, Singh JS (1989) Effect of cultivation on microbial biomass C and N of dry tropical forest soil. Biol Fertil Soils 8:343–348

    Article  Google Scholar 

  • Srivastava P, Raghubanshi AS, Singh R, Tripathi SN (2015) Soil carbon efflux and sequestration as a function of relative availability of inorganic N pools in dry tropical agroecosystem. Appl Soil Ecol 96:1–6

    Article  Google Scholar 

  • Srivastava P, Singh PK, Singh R, Bhadouria R, Singh DK, Singh S, Afreen T, Tripathi SN, Singh P, Singh H, Raghubanshi AS (2016) Relative availability of inorganic N-pools shifts under land use change: an unexplored variable in soil carbon dynamics. Ecol Indic 64:228–236

    Article  CAS  Google Scholar 

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93

    Article  Google Scholar 

  • Stevenson FJ (ed) (1994) Humus chemistry. Wiley, New York

    Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86:19–31

    Article  CAS  Google Scholar 

  • Strong DT, Wever HD, Merckx R, Recous S (2004) Spatial location of carbon decomposition in the soil pore system. Eur J Soil Sci 55:739–750

    Article  Google Scholar 

  • Su YZ, Wang F, Suo DR, Zhang ZH, Du MW (2006) Long- term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize crop- ping system in Northwest China. Nutr Cycl Agroecosyst 75:285–295

    Article  CAS  Google Scholar 

  • Subke J-A, Voke NR, Leronni V, Garnett MH Phil Ineson(2011) Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. J Ecol 99(1):186–193

    Google Scholar 

  • Tian H, Xu X, Lu C, Liu M, Ren W, Chen G et al (2011) Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J Geophys Res Biogeo 116(G2)

    Google Scholar 

  • Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Article  CAS  Google Scholar 

  • Tu C, Ristaino JB, Hu S (2006) Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biol Biochem 38:247–255

    Article  CAS  Google Scholar 

  • Uehara G (1982) Soil science for the tropics. In: Proceedings of the ASCE geotechnical engineering division specialty conference (ed) Engineering and construction in tropical and residual soils, Honolulu, pp 13–26

    Google Scholar 

  • Van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by micro-organisms. Biodegradation 11:213–233

    Google Scholar 

  • Van Wesemael B, Paustian K, Meersmans J, Goidts E, Barancikova G, Easter M (2010) Agricultural management explains historic changes in regional soil carbon stocks. Proc Natl Acad Sci 107:14926–14930

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma BC, Datta SP, Rattan RK, Singh AK (2013) Labile and stabilised fractions of soil organic carbon in some intensively cultivated alluvial soils. J Environ Biol 34:1069–1075

    CAS  PubMed  Google Scholar 

  • Vinther FP, Hansen EM, Olesen JE (2004) Effects of plant residues on crop performance, N mineralisation and microbial activity including field CO2 and N2O fluxes in unfertilised crop rotations. Nutr Cycl Agroecosyst 70:189–199

    Article  CAS  Google Scholar 

  • Vineela C, Wani SP, Srinivasarao C, Padmaja B, Vittal KPR (2008) Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manurial experiments in the semi-arid tropics of India. Appl Soil Ecol 40(1):165–173

    Article  Google Scholar 

  • Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724

    Article  CAS  PubMed  Google Scholar 

  • Wang QL, Bai YH, Gao HW, He J, Chen H, Chesney RC, Kuhn NJ, Li HW (2008) Soil chemical properties and microbial biomass after 16 years of no-tillage fanning on the Loess Plateau, China. Geoderma 144:502–508

    Article  CAS  Google Scholar 

  • Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Funct Plant Biol 32:695–706

    Article  PubMed  Google Scholar 

  • Wick B, Kuhne RF, Vielhauer K, Vlek PLG (2002) Temporal variability of selected soil microbiological and biochemical indicators under different soil quality conditions in South-Western Nigeria. Biol Fertil Soils 35:155–167

    Article  CAS  Google Scholar 

  • Xu M, Louy SX, Wang W, Baniyamuddin M, Zhao K (2011) Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol Fertil Soils 47:745–752

    Article  CAS  Google Scholar 

  • Yan D, Wang D, Yang L (2007) Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol Fertil Soils 44:93–101

    Article  Google Scholar 

  • Yang C, Yang L, Ouyang Z (2005) Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma 124:133–142

    Article  CAS  Google Scholar 

  • Yang K, Zhu J, Xu S (2014) Influences of various forms of nitrogen additions on carbon mineralization in natural secondary forests and adjacent larch plantations in Northeast China. Can J For Res 44:441–448

    Article  CAS  Google Scholar 

  • Yu X, Zha T, Pang Z, Wu B, Wang X, Chen G, Li C, Cao J, Jia G, Li X, Wu H (2011) Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China. PLoS One 6:e28397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Ding W, Luo J, Genga R, Cai Z (2012) Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res 124:170–177

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zsolnay A (1996) Dissolved humus in soil waters. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 171–223

    Chapter  Google Scholar 

Download references

Acknowledgement

We are thankful to the book editors and reviewers for their constructive comments, which helped us in improving the chapter. Also, we acknowledge the financial support from DST-SERB (PDF/2016/003503) and University Grant Commission (UGC), New Delhi, India. PS and RS extend their thanks to Shikha Singh, Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, for helping in drafting the figures of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, P. et al. (2018). Physical and Biological Processes Controlling Soil C Dynamics. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 33. Sustainable Agriculture Reviews, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-99076-7_6

Download citation

Publish with us

Policies and ethics