Skip to main content

Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 254))

Abstract

In this work, we derive a probabilistic forecast of the solar irradiance during a day at a given location, using a stochastic differential equation (SDE for short) model. We propose a procedure that transforms a deterministic forecast into a probabilistic forecast: the input parameters of the SDE model are the AROME numerical weather predictions computed at day \(D-1\) for the day D. The model also accounts for the maximal irradiance from the clear sky model. The SDE model is mean-reverting towards the deterministic forecast and the instantaneous amplitude of the noise depends on the clear sky index, so that the fluctuations vanish as the index is close to 0 (cloudy) or 1 (sunny), as observed in practice. Our tests show a good adequacy of the confidence intervals of the model with the measurement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See https://www.epexspot.com/en/market-data/dayaheadauction.

  2. 2.

    \({\mathbb {E}\left[ .\right] }\) is the expectation attached to the forthcoming probabilistic model.

References

  1. R. Aïd, L. Campi, N. Langrené, H. Pham, A probabilistic numerical method for optimal multiple switching problem in high dimension. SIAM J. Financ. Math. 5(1), 191–231 (2014)

    Article  MathSciNet  Google Scholar 

  2. R. Aid, Electricity Derivatives. Springer Briefs in Quantitative Finance (Springer, Berlin, 2015)

    Book  Google Scholar 

  3. S. Alessandrini, L. Delle Monache, S. Sperati, G. Cervone, G. Cervone, An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy 157, 95–110 (2015)

    Article  Google Scholar 

  4. J. Badosa, M. Haeffelin, H. Chepfer, Scales of spatial and temporal variation of solar irradiance on Reunion tropical Island. Solar Energy 88, 42–56 (2013)

    Article  Google Scholar 

  5. B.M. Bibby, I.M. Skovgaard, M. Sorensen, Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11(2), 191–220 (2005)

    Article  MathSciNet  Google Scholar 

  6. R.E. Bird, R.L. Hulstrom, Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Technical report, Solar Energy Research Institute, Golden, CO (USA), 1981

    Google Scholar 

  7. M. Delfanti, D. Falabretti, M. Merlo, Energy storage for PV power plant dispatching. Renew. Energy 80, 61–72 (2015)

    Article  Google Scholar 

  8. H.M. Diagne, P. Lauret, M. David, Solar irradiation forecasting: state-of-the-art and proposition for future developments for small-scale insular grids, in WREF 2012-World Renewable Energy Forum (2012)

    Google Scholar 

  9. E. Gobet, LAN property for ergodic diffusion with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38(5), 711–737 (2002)

    Article  MathSciNet  Google Scholar 

  10. E. Gobet, M. Grangereau, McKean optimal stochastic control of microgrid equipped with photo-voltaic panels and battery. Preprint (2018)

    Google Scholar 

  11. R. Hanna, J. Kleissl, A. Nottrott, M. Ferry, Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. Solar Energy 103, 269–287 (2014)

    Article  Google Scholar 

  12. D. Heinemann, E. Lorenz, M. Girodo, Solar irradiance forecasting for the management of solar energy systems. Energy Meteorology Group, Oldenburg University, Energy and Semiconductor Research Laboratory, 2006

    Google Scholar 

  13. E.B. Iversen, J.M. Morales, J.K. Møller, H. Madsen, Probabilistic forecasts of solar irradiance using stochastic differential equations. Environmetrics 25(3), 152–164 (2014)

    Article  MathSciNet  Google Scholar 

  14. H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. François, Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Sustain. Energy 58(10) (2011)

    Article  Google Scholar 

  15. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Edn. (Springer, Berlin, 1991)

    Google Scholar 

  16. M. Kessler, A. Lindner, M. Sorensen. Statistical Methods for Stochastic Differential Equations (CRC Press, Boca Raton, 2012)

    Google Scholar 

  17. J. Kleissl, Solar Energy Forecasting and Resource Assessment (Academic Press, London, 2013)

    Google Scholar 

  18. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol. 23 (Springer, Berlin, 2010). 4th Corrected Printing

    Google Scholar 

  19. C.B. Martinez-Anido, B. Botor, A.R. Florita, C. Draxl, S. Lu, H.F. Hamann, B.M. Hodge, The value of day-ahead solar power forecasting improvement. Solar Energy 129, 192–203 (2016)

    Article  Google Scholar 

  20. A.A. Mohammed, Z. Aung, Ensemble learning approach for probabilistic forecasting of solar power generation. Energies 9(12), 1017 (2016)

    Article  Google Scholar 

  21. K.D. Orwig, M.L. Ahlstrom, V. Banunarayanan, J. Sharp, J.M. Wilczak, J. Freedman, S.E. Haupt, J. Cline, O. Bartholomy, H.F. Hamann, B.M. Hodge, C. Finley, D. Nakafuji, J.L. Peterson, D. Maggio, M. Marquis, Recent trends in variable generation forecasting and its value to the power system. IEEE Trans. Sustain. Energy 6(3), 924–933 (2015)

    Article  Google Scholar 

  22. R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe, K. Hemker Jr., D. Heinemann, J. Remund, S.C. Müller, W. Traunmüller, G. Steinmauer, D. Prozo, J.A. Ruiz-Arias, V. Lara-Fanego, L. Ramirez-Santigosa, M. Gastin-Romero, L.M. Pomares, Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Solar Energy 94, 305–326 (2013)

    Article  Google Scholar 

  23. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Comprehensive Studies in Mathematics, 3rd Edn. (Springer, Berlin, 1999)

    Book  Google Scholar 

  24. C.V.A. Silva, L. Lim, D. Stevens, D Nakafuji, Probabilistic models for one-day ahead solar irradiance forecasting in renewable energy applications, in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2015), pp. 1163–1168

    Google Scholar 

  25. T. Soubdhan, R. Emilion, Stochastic differential equation for modeling global solar radiation sequences, in Proceedings of the IASTED International Conference: Modelling, Identification, and Control (AsiaMIC 2010) (2010), pp. 14–17

    Google Scholar 

  26. D. Talay, Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29, 13–36 (1990)

    Article  Google Scholar 

  27. A. Tuohy, J. Zack, S.E. Haupt, J. Sharp, M. Ahlstrom, S. Dise, E. Grimit, C. Mohrlen, M. Lange, M.G. Casado, J. Black, M. Marquis, C. Collier, Solar forecasting: methods, challenges, and performance. IEEE Power Energy Mag. 13(6), 50–59 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the Chair Financial Risks of the Risk Foundation, the Finance for Energy Market Research Centre and the ANR project CAESARS (ANR-15-CE05-0024). The work benefits from the support of the Siebel Energy Institute and it was conducted in the frame of the TREND-X research program of Ecole Polytechnique, supported by Fondation de l’Ecole Polytechnique. The authors acknowledge Météo-France and the Cosy project for the numerical weather prediction data used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gobet .

Editor information

Editors and Affiliations

Appendix: Proof of Well-Posedness of the SDE Model (4.3), When \(\frac{ 1 }{2 }\le \alpha \) and \(\frac{ 1 }{2 }\le \beta \)

Appendix: Proof of Well-Posedness of the SDE Model (4.3), When \(\frac{ 1 }{2 }\le \alpha \) and \(\frac{ 1 }{2 }\le \beta \)

Because the exponents \(\alpha \) and \(\beta \) are possibly non integers in the definition of (4.3), the signs of \(X_t\) and \(1-X_t\) may be an issue. Therefore, we start with a modification of the SDE model (4.3) avoiding the sign problems:

$$\begin{aligned} \mathrm{d}X_t=-a(X_t-x^{\mathtt{forecast}}_t)\mathrm{d}t+\sigma {\mathbf {1}_{X_t\in [0,1]}X_t^\alpha (1-X_t)^\beta } \mathrm{d}W_t, \end{aligned}$$
(4.10)

where \(X_0\in [0,1]\) is a given deterministic initial value.

Existence/uniqueness. A direct application of [23, Chapter IX, Theorem 3.5-(ii), p. 390 and Theorem 1.7 p. 368] shows that the model (4.10) is well-posed, in the sense that there is an unique strong solution on the probability space \((\varOmega , {\mathscr {F}}, \mathbb {P})\) where the filtration is the natural filtration of the Brownian motion completed as usually with the \(\mathbb {P}\)-null sets. In [23, Chapter IX, Theorem 3.5-(ii), p. 390] we have used \(\frac{ 1 }{2 }\le \alpha \) and \(\frac{ 1 }{2 }\le \beta \).

The solution (4.10) takes values in [0, 1]. We invoke a comparison theorem for SDEs. Denote \(b^X(t,x)=-a(x-x^{\mathtt{forecast}}_t)\) the drift coefficient of X and now, consider the solution to

$$\begin{aligned} \mathrm{d}Y_t=-a Y_t \mathrm{d}t+\sigma {\mathbf {1}_{Y_t\in [0,1]} Y_t^\alpha (1-Y_t)^\beta } \mathrm{d}W_t, \qquad Y_0=0. \end{aligned}$$
(4.11)

Its initial condition fulfills \(X_0\ge Y_0\), its drift \(b^Y(t,y)=-a y\) is globally Lipschitz in space (and \(b^X\) too) and last, we have \(b^Y(t,x)-b^X(t,x)=-ax^{\mathtt{forecast}}_t\le 0\). Therefore, [15, Chapter V, Proposition 2.18, p. 293] shows that \(X_t\ge Y_t\) for any t with probability 1. But since the solution to (4.11) is 0, the above proves that X remains positive.

Similarly, set

$$\begin{aligned} \mathrm{d}Y_t=-a (Y_t-1) \mathrm{d}t+\sigma {\mathbf {1}_{Y_t\in [0,1]} Y_t^\alpha (1-Y_t)^\beta } \mathrm{d}W_t, \qquad Y_0=1. \end{aligned}$$

Clearly, \(Y_0\ge X_0\), \(b^X(t,x)-b^Y(t,x)=-a(1-x^{\mathtt{forecast}}_t)\le 0\), \(Y_t=1\) and we conclude that \(X_t\le 1\). This justifies why we can remove the indicator function in (4.10) to get (4.3).

\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badosa, J., Gobet, E., Grangereau, M., Kim, D. (2018). Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach. In: Drobinski, P., Mougeot, M., Picard, D., Plougonven, R., Tankov, P. (eds) Renewable Energy: Forecasting and Risk Management. FRM 2017. Springer Proceedings in Mathematics & Statistics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-99052-1_4

Download citation

Publish with us

Policies and ethics