Skip to main content

Quantum Rotor Engines

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

This chapter presents autonomous quantum engines that generate work in the form of directed motion for a rotor. We first formulate a prototypical clock-driven model in a time-dependent framework and demonstrate how it can be translated into an autonomous engine with the introduction of a planar rotor degree of freedom. The rotor plays both the roles of internal engine clock and of work repository. Using the example of a single-qubit piston engine, the thermodynamic performance is then reviewed. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation; and we compare them with the actual energy output to an external dissipative load. The chapter closes with a quantum-classical comparison of the engine’s dynamics. For the single-qubit piston example, we propose two alternative representations of the qubit in an entirely classical framework: (i) a coin flip model and (ii) a classical magnetic moment, showing subtle differences between the quantum and classical descriptions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To ensure a consistent quantum description of the rotor angle, the operator \(\hat{\varphi }\) will appear only in the form of strictly \(2\pi \)-periodic functions.

  2. 2.

    We assume that the hot and cold dissipators do not themselves contribute to a net boost of angular momentum through their angular dependence. In the present case of thermal dissipators (9.10), this is ensured for real-valued modulation functions \(f_\mathrm{h,c}\).

  3. 3.

    A passive state is a state whose energy content cannot be reduced further by means of another unitary. This implies that this state must be diagonal in the energy eigenbasis and its eigenvalues must decrease with growing energy.

  4. 4.

    Notice that we choose to keep the contribution of spontaneous emission.

References

  1. A. Roulet, S. Nimmrichter, J.M. Arrazola, S. Seah, V. Scarani, Phys. Rev. E 95, 062131 (2017). https://doi.org/10.1103/PhysRevE.95.062131

    Article  ADS  Google Scholar 

  2. S. Seah, S. Nimmrichter, V. Scarani, New J. Phys. 20(4), 043045 (2018). https://doi.org/10.1088/1367-2630/aab704

    Article  ADS  Google Scholar 

  3. A. Roulet, S. Nimmrichter, J.M. Taylor, Quantum Sci. Technol. 3, 035008 (2018). https://doi.org/10.1088/2058-9565/aac40d

  4. F. Tonner, G. Mahler, Phys. Rev. E 72, 066118 (2005). https://doi.org/10.1103/PhysRevE.72.066118

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Youssef, G. Mahler, A.S. Obada, Phys. E 42(3), 454 (2010). https://doi.org/10.1016/j.physe.2009.06.032

    Article  Google Scholar 

  6. N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. E 85, 051117 (2012). https://doi.org/10.1103/PhysRevE.85.051117

    Article  ADS  Google Scholar 

  7. L. Gilz, E.P. Thesing, J.R. Anglin (2013), arXiv:1304.3222

  8. A. Mari, A. Farace, V. Giovannetti, J. Phys. B 48(17), 175501 (2015). https://doi.org/10.1088/0953-4075/48/17/175501

  9. A. Levy, L. Diósi, R. Kosloff, Phys. Rev. A 93, 052119 (2016). https://doi.org/10.1103/PhysRevA.93.052119

    Article  ADS  Google Scholar 

  10. A.U.C. Hardal, N. Aslan, C.M. Wilson, Ö.E. Müstecaplıoğlu, Phys. Rev. E 96, 062120 (2017). https://doi.org/10.1103/PhysRevE.96.062120

  11. R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins, Ann. Phys. 378, 71 (2017). https://doi.org/10.1016/j.aop.2017.01.003

    Article  ADS  Google Scholar 

  12. R. Kosloff, J. Chem. Phys. 80(4), 1625 (1984). https://doi.org/10.1063/1.446862

    Article  ADS  Google Scholar 

  13. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299(5608), 862 (2003). https://doi.org/10.1126/science.1078955

    Article  ADS  Google Scholar 

  14. Y. Rezek, R. Kosloff, New J. Phys. 8(5), 83 (2006). https://doi.org/10.1088/1367-2630/8/5/083

  15. R. Alicki, Open Syst. Inf. Dyn. 21(01n02), 1440002 (2014). https://doi.org/10.1142/S1230161214400022

  16. K. Zhang, F. Bariani, P. Meystre, Phys. Rev. Lett. 112, 150602 (2014). https://doi.org/10.1103/PhysRevLett.112.150602

  17. R. Uzdin, A. Levy, R. Kosloff, Entropy 18(4) (2016). https://doi.org/10.3390/e18040124

  18. R. Alicki, J. Phys. A Math. Gen. 12(5), L103 (1979). https://doi.org/10.1088/0305-4470/12/5/007

    Article  ADS  Google Scholar 

  19. X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012). https://doi.org/10.1103/PhysRevE.86.051105

    Article  ADS  Google Scholar 

  20. O. Abah, E. Lutz, EPL (Europhys. Lett.) 106(2), 20001 (2014). https://doi.org/10.1209/0295-5075/106/20001

  21. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602

    Article  ADS  Google Scholar 

  22. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18(8), 083012 (2016). https://doi.org/10.1088/1367-2630/18/8/083012

  23. J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017). https://doi.org/10.1103/PhysRevX.7.031044

    Article  Google Scholar 

  24. R. Wulfert, M. Oechsle, T. Speck, U. Seifert, Phys. Rev. E 95, 050103 (2017). https://doi.org/10.1103/PhysRevE.95.050103

    Article  ADS  Google Scholar 

  25. A. Rivas, A.D.K. Plato, S.F. Huelga, M.B. Plenio, New J. Phys. 12(11), 113032 (2010). https://doi.org/10.1088/1367-2630/12/11/113032

    Article  ADS  Google Scholar 

  26. A. Levy, R. Kosloff, Europhys. Lett. 107(2), 20004 (2014). https://doi.org/10.1209/0295-5075/107/20004

    Article  ADS  Google Scholar 

  27. P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, New J. Phys. 19, 123037 (2017). https://doi.org/10.1088/1367-2630/aa964f

    Article  ADS  Google Scholar 

  28. J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Open Syst. Inf. Dyn. 24, 1740010 (2017). https://doi.org/10.1142/S1230161217400108

    Article  MathSciNet  Google Scholar 

  29. J. Johansson, P. Nation, F. Nori, Comput. Phys. Commun. 184(4), 1234 (2013). https://doi.org/10.1016/j.cpc.2012.11.019

  30. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Europhys. Lett. 67(4), 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

  31. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A 49(14), 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

  32. B.A. Stickler, B. Schrinski, K. Hornberger, Phys. Rev. Lett. 121, 040401 (2018). https://doi.org/10.1103/PhysRevLett.121.040401

    Article  ADS  Google Scholar 

  33. A. Caldeira, A. Leggett, Phys. A 121(3), 587 (1983). https://doi.org/10.1016/0378-4371(83)90013-4

    Article  MathSciNet  Google Scholar 

  34. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  35. S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum 1, 37 (2017). https://doi.org/10.22331/q-2017-12-11-37

  36. N.I. Fisher, Statistical Analysis of Circular Data (Cambridge University Press, Cambridge, 1995). https://doi.org/10.1002/bimj.4710380307

  37. J.L. García-Palacios, On the Statics and Dynamics of Magnetoanisotropic Nanoparticles (Wiley-Blackwell, New Jercy, 2007), pp. 1–210. https://doi.org/10.1002/9780470141717.ch1

Download references

Acknowledgements

This research is supported by the Singapore Ministry of Education through the Academic Research Fund Tier 3 (Grant No. MOE2012-T3-1-009); and by the same MoE and the National Research Foundation, Prime Minister’s Office, Singapore, under the Research Centres of Excellence programme. In addition, this work was financially supported by the Swiss SNF and the NCCR Quantum Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Seah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seah, S., Nimmrichter, S., Roulet, A., Scarani, V. (2018). Quantum Rotor Engines. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_9

Download citation

Publish with us

Policies and ethics