Skip to main content

Maxwell’s Demon in Superconducting Circuits

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

This chapter provides an overview of the first experimental realizations of quantum-mechanical Maxwell’s demons based on superconducting circuits. The principal results of these experiments are recalled and put into context. We highlight the versatility offered by superconducting circuits for studying quantum thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the battery is the propagating electromagnetic mode that contains the pulse. It can both store and use the energy it contains, hence qualifying as a battery. Indeed, it can store the excitation of a qubit or of a classical cavity field as described in the text. Moreover, if it interacts with an other distant ancillary qubit or cavity in its ground state, it can provide work to excite it. In the text, the qubit extracted work is used to amplify the pulse in the battery.

References

  1. M.H. Devoret, R.J. Schoelkopf, Science 339, 1169 (2013). https://doi.org/10.1126/science.1231930

  2. A. Roy, M. Devoret, Comptes Rendus Physique 17, 740 (2016). https://doi.org/10.1016/j.crhy.2016.07.012

  3. F. Mallet, F.R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, D. Esteve, Nat. Phys. 5, 791 (2009). https://doi.org/10.1038/nphys1400

  4. K.W. Murch, S.J. Weber, C. Macklin, I. Siddiqi, Nature 502, 211 (2013). https://doi.org/10.1038/nature12539

  5. M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M. Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, M.H. Devoret, Science 339, 178 (2013). https://doi.org/10.1126/science.1226897

  6. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Nature 490, 77 (2012). https://doi.org/10.1038/nature11505

  7. S.J. Weber, K.W. Murch, M.E. Kimchi-Schwartz, N. Roch, I. Siddiqi, Comptes Rendus Physique 17, 766 (2016). https://doi.org/10.1016/j.crhy.2016.07.007

  8. Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, Y. Nakamura, Nat. Commun. 9, 1291 (2018). https://doi.org/10.1038/s41467-018-03686-y

  9. M. Naghiloo, J.J. Alonso, A. Romito, E. Lutz, K.W. Murch (2018). https://doi.org/10.1103/PhysRevLett.121.030604

  10. N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, B. Huard, Proc. Natl. Acad. Sci. 114, 7561 (2017). https://doi.org/10.1073/pnas.1704827114

  11. H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Physical Review Letters 107, 240501 (2011). https://doi.org/10.1103/PhysRevLett.107.240501

  12. L. Szilard, Behav. Sci. 9, 301 (1964). https://doi.org/10.1002/bs.3830090402

  13. K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009). https://doi.org/10.1103/RevModPhys.81.1

  14. R. Landauer, IBM J. Res. Dev. 5, 183 (1961). https://doi.org/10.1147/rd.53.0183

  15. C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982). https://doi.org/10.1007/BF02084158

  16. G. Wendin, Rep. Prog. Phys. 80, 106001 (2017). https://doi.org/10.1088/1361-6633/aa7e1a

  17. X. Gu, A.F. Kockum, A. Miranowicz, Y.-x. Liu, F. Nori, Physics Reports 718–719, 1 (2017). https://doi.org/10.1016/j.physrep.2017.10.002

  18. A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 62320 (2004). https://doi.org/10.1103/PhysRevA.69.062320

  19. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

  20. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

  21. J. Kurchan (2000). arXiv:cond-mat/0007360

  22. H. Tasaki (2000). arXiv:cond-mat/0009244

  23. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Revi. Mod. Phys. 82, 1155 (2010). https://doi.org/10.1103/RevModPhys.82.1155

  24. K. Funo, Y. Watanabe, M. Ueda, Phys. Rev. A 88, 052319 (2013). https://doi.org/10.1103/PhysRevA.88.052319

  25. P. Campagne-Ibarcq, Measurement back action and feedback in superconducting circuits, Theses, Ecole Normale Supérieure (ENS) (2015). https://hal.archives-ouvertes.fr/tel-01248789

  26. D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 445, 515 (2007). https://doi.org/10.1038/nature05461

  27. G. Kirchmair, B. Vlastakis, Z. Leghtas, S.E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 495, 205 (2013). https://doi.org/10.1038/nature11902

  28. J.Z. Blumoff, K. Chou, C. Shen, M. Reagor, C. Axline, R.T. Brierley, M.P. Silveri, C. Wang, B. Vlastakis, S.E. Nigg, L. Frunzio, M.H. Devoret, L. Jiang, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. X 6, 031041 (2016). https://doi.org/10.1103/PhysRevX.6.031041

  29. N. Roch, E. Flurin, F. Nguyen, P. Morfin, P. Campagne-Ibarcq, M.H. Devoret, B. Huard, Phys. Rev. Lett. 108, 147701 (2012). https://doi.org/10.1103/PhysRevLett.108.147701

  30. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (2001). https://doi.org/10.1002/9783527617197

  31. J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, New J. Phys. 15, 115006 (2013). https://doi.org/10.1088/1367-2630/15/11/115006

  32. H. Quan, Y. Wang, Y.-X. Liu, C. Sun, F. Nori, Phys. Rev. Lett. 97, 180402 (2006). https://doi.org/10.1103/PhysRevLett.97.180402

  33. H. Quan, Y.-X. Liu, C. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007). https://doi.org/10.1103/PhysRevE.76.031105

  34. J.P. Pekola, D.S. Golubev, D.V. Averin, Phys. Rev. B 93, 024501 (2016). https://doi.org/10.1103/PhysRevB.93.024501

  35. A.O. Niskanen, Y. Nakamura, J.P. Pekola, Phys. Rev. B 76, 174523 (2007). https://doi.org/10.1103/PhysRevB.76.174523

  36. B. Karimi, J.P. Pekola, Phys. Rev. B 94, 184503 (2016). https://doi.org/10.1103/PhysRevB.94.184503

  37. M. Campisi, J. Pekola, R. Fazio, New J. Phys. 19, 053027 (2017). https://doi.org/10.1088/1367-2630/aa6acb

  38. J.P. Pekola, V. Brosco, M. Möttönen, P. Solinas, A. Shnirman, Phys. Rev. Lett. 105, 030401 (2010). https://doi.org/10.1103/PhysRevLett.105.030401

  39. J. Govenius, R.E. Lake, K.Y. Tan, V. Pietilä, J.K. Julin, I.J. Maasilta, P. Virtanen, M. Möttönen, Phys. Rev. B 90, 064505 (2014). https://doi.org/10.1103/PhysRevB.90.064505

  40. S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J.P. Pekola, Phys. Rev. Appl. 3, 014007 (2015). https://doi.org/10.1103/PhysRevApplied.3.014007

  41. S. Hacohen-Gourgy, L.S. Martin, E. Flurin, V.V. Ramasesh, K.B. Whaley, I. Siddiqi, Nature 538, 491 (2016). https://doi.org/10.1038/nature19762

  42. U. Vool, S. Shankar, S.O. Mundhada, N. Ofek, A. Narla, K. Sliwa, E. Zalys-Geller, Y. Liu, L. Frunzio, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Phys. Rev. Lett. 117, 133601 (2016). https://doi.org/10.1103/PhysRevLett.117.133601

  43. C. Elouard, D. Herrera-Martí, B. Huard, A. Auffèves, Phys. Rev. Lett. 118, 260603 (2017). https://doi.org/10.1103/PhysRevLett.118.260603

  44. V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Science 326, 113 (2009). https://doi.org/10.1126/science.1175552

  45. A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J.T. Peltonen, C. Chen, J.P. Pekola, Nat. Phys. 14, 991–995 (2018). https://doi.org/10.1038/s41567-018-0199-4

  46. J.B. Brask, G. Haack, N. Brunner, M. Huber, New J. Phys. 17, 113029 (2015). https://doi.org/10.1088/1367-2630/17/11/113029

  47. C.M. Caves, J. Combes, Z. Jiang, S. Pandey, Phys. Rev. A 86, 063802 (2012). https://doi.org/10.1103/PhysRevA.86.063802

  48. M.A. Castellanos-Beltran, K.W. Lehnert, Appl. Phys. Lett. 91, 083509 (2007). https://doi.org/10.1063/1.2773988

  49. Q. Ficheux, S. Jezouin, Z. Leghtas, B. Huard, Nat. Commun. 9, 1926 (2018). https://doi.org/10.1038/s41467-018-04372-9

Download references

Acknowledgements

This work was funded by Agence Nationale de la Recherche under the grant ANR-17-ERC2-0001-01. Part of the research reviewed in this chapter was made possible by the COST MP1209 network “Thermodynamics in the quantum regime”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Huard .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Quantum Trajectories

We describe here how one can determine the quantum state \(\rho _t\) in the experiment of Naghiloo et al. [9]. The signal V(t) carrying the information being continuous, one can decompose the information into time bins and get a time-resolved measurement. In order to observe non negligible effects of measurement backaction, it is crucial to minimize the amount of information that is lost between the cavity and the measurement apparatus, i.e. to maximize the quantum efficiency \(\eta \). This process is done using quantum-limited amplification right after the cavity, a process that adds the minimal amount of noise allowed by quantum mechanics [47]. In their quantum trajectories experiment, Naghiloo et al. use a Josephson Parametric Amplifier (JPA) [48] that amplifies one of the two quadratures of the field (equivalent to the position and momentum operators of a mechanical linear oscillator) and as such operates as a phase-sensitive amplifier allowing to reach a state of the art quantum efficiency of about \(\eta =30\%\). Denoting as \(\mathrm {d}t\) the time interval between two successive records, the measurement record at time t is given by \(\mathrm {d}V(t)=\sqrt{2\eta \Gamma _m}\langle \sigma _z\rangle _{\rho _t}\mathrm {d}t+\mathrm {d}\mathcal {W}_t\) where \(\mathrm {d}\mathcal {W}_t\) a zero-mean Wiener process whose variance is \(\mathrm {d}t\) and which represents the quantum and technical noise. Note that here the expectation value \(\langle \sigma _z\rangle _{\rho _t}=\mathrm {Tr}(\rho _t\sigma _z)\) depends on the particular realization of the trajectory and thus on the measurement record \(\{V(\tau )\}_{\tau }\) at all times \(\tau <t\). The density matrix of the qubit is then reconstructed using the Stochastic Master Equation (SME) [49]

$$\begin{aligned} {\mathrm {d}}\rho _{t}=-\mathrm {d}t\frac{i}{\hbar }[H,\rho _t]+\mathrm {d}t\frac{\Gamma _m}{2}\mathcal {D}[\sigma _z]\rho _t +\ \mathrm {d}\mathcal {W}_t\sqrt{2\eta \Gamma _m}\mathcal {M}[\sigma _z]\rho _t, \end{aligned}$$
(40.11)

where \(\mathcal {D}\) is the Lindblad super operator and \(\mathcal {M}\) the measurement super operator \(\mathcal {M}[c]\rho =\frac{1}{2}\big ((c)-\langle c\rangle )\rho +\rho (c^\dagger -\langle c^\dagger \rangle )\big )\). The two first terms correspond to a Lindbladian evolution of the qubit dephased by the measurement drive (for the seek of simplicity other decoherence channels as spontaneous decay of the qubit have been omitted). The last one represents the measurement backaction: at each \(\mathrm {d}t\) the state is kicked depending on the measurement record, possibly changing the mean energy of the qubit. The inherent stochasticity of the SME highlights the profound link between information and energy in quantum mechanics and has triggered recent works on the subject, including in the field of superconducting circuits. The reader can refer to the Chaps. 15, 29 and 33 for a more precise treatment of the subject.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cottet, N., Huard, B. (2018). Maxwell’s Demon in Superconducting Circuits. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_40

Download citation

Publish with us

Policies and ethics