Skip to main content

Smooth Entropy in Axiomatic Thermodynamics

  • Chapter
  • First Online:
Book cover Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Thermodynamics can be formulated in either of two approaches, the phenomenological approach, which refers to the macroscopic properties of systems, and the statistical approach, which describes systems in terms of their microscopic constituents. We establish a connection between these two approaches by means of a new axiomatic framework that can take errors and imprecisions into account. This link extends to systems of arbitrary sizes including very small systems, for which the treatment of imprecisions is pertinent to any realistic situation. Based on this, we identify the quantities that characterise whether certain thermodynamic processes are possible with entropy measures from information theory. In the error-tolerant case, these entropies are so-called smooth min and max entropies. Our considerations further show that in an appropriate macroscopic limit there is a single entropy measure that characterises which state transformations are possible. In the case of many independent copies of a system (the so-called i.i.d. regime), the relevant quantity is the von Neumann entropy. Transformations among microcanonical states are characterised by the Boltzmann entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, we follow Lieb and Yngvason’s convention regarding the notation of the order relation, where \(X \prec Y\) means that X can be transformed into Y with an adiabatic process. Note that this is the reverse convention of what a reader acquainted with the literature on quantum resource theories might expect.

  2. 2.

    The composition operation is assumed to be associative and commutative.

  3. 3.

    The scaling is taken to obey \(1 X = X\) as well as \(\alpha _1(\alpha _2 X) = (\alpha _1 \alpha _2) X\), thus \(1 \Gamma _{\mathrm {EQ}}= \Gamma _{\mathrm {EQ}}\) and \(\alpha _1(\alpha _2 \Gamma _{\mathrm {EQ}}) = (\alpha _1 \alpha _2) \Gamma _{\mathrm {EQ}}\).

  4. 4.

    In general, \(\prec \) may not be a total preorder and the ordering of values assigned to states that cannot be compared by means of \(\prec \) may be ambiguous.

  5. 5.

    This definition extends to states obeying \(X \prec X_0\) or \(X_1 \prec X\) [5], where it has to be interpreted slightly differently. To see this, note that the expression

    $$\begin{aligned} ((1-\alpha ) X_0, \alpha X_1) \prec X \end{aligned}$$
    (32.5)

    is equivalent to \((((1-\alpha ) X_0, \alpha X_1), \alpha ' X_1) \prec (X, \alpha ' X_1)\) for any \(\alpha '\ge 0\) and hence also to \(((1-\alpha ) X_0, (\alpha '+\alpha ) X_1) \prec (X, \alpha ' X_1)\). This allows us to consider negative \(\alpha \) (while still using only positive coefficients as scaling factors). If \(\alpha <0\), by choosing \(\alpha '=-\alpha \), condition (32.2) is to be understood as a transformation \(((1-\alpha ) X_0) \prec (X, |\alpha | X_1)\). A similar argument shows that for \(\alpha >1\) the condition \(((1-\alpha ) X_0, \alpha X_1) \prec X\) can be understood as \(\alpha X_1 \prec ((\alpha -1) X_0, X)\).

  6. 6.

    The bounds given in [7] are

    $$\begin{aligned} S_{\mathrm {-}}(X)&= \sup \left\{ S(X') \,\right. \mid \left. X' \in \Gamma _{\mathrm {EQ}}, \ X' \prec X\;\;\right\} \end{aligned}$$
    (32.6)
    $$\begin{aligned} S_{\mathrm {+}}(X)&= \inf \, \left\{ S(X'') \right. \mid \left. X'' \in \Gamma _{\mathrm {EQ}}, \ X \prec X''\,\right\} \ . \end{aligned}$$
    (32.2)

    In phenomenological thermodynamics, where equilibrium states are traditionally described in terms of continuous parameters (such as the internal energy and the volume for instance), there exists an equilibrium state \(X_\alpha \) for each \(((1-\alpha ) X_0, \alpha X_1)\) that obeys \(X_\alpha \sim ((1-\alpha ) X_0, \alpha X_1)\). Under these circumstances the bounds (32.5) and (32.6) coincide with (32.3) and (32.4) respectively. This is, however, not implied by the axioms and may not hold if systems are described in a different way (e.g. in the statistical approach taken in Sect. 32.3). Note also that for (32.3) and (32.4) the inequality in (32.7) need not be strict.

  7. 7.

    We alert the reader to the non-standard notation for the order relation (see also Footnote 1).

  8. 8.

    Notice that approximations are also relevant for macroscopic systems. However, we do not usually explicitly mention them there, as they are extremely accurate.

  9. 9.

    For \( \epsilon =0\) the usual majorisation relation is recovered.

  10. 10.

    We aim to achieve the transformation \(\rho \otimes \frac{\mathbbm {1}_2}{2} \prec _{\mathrm {M}}^ \epsilon \rho \otimes |0\rangle \! \langle 0|\), where the ordered spectra of the two states are \((\frac{p}{2},\frac{p}{2},\frac{1-p}{2},\frac{1-p}{2})\) and \((p,1-p,0,0)\).

  11. 11.

    The largest eigenvalues of \(\rho \otimes \chi _{\lambda _1}\) and \(\rho \otimes \chi _{\lambda _2}\) are \(p 2^{-\lambda _1}\) and \(p 2^{-\lambda _ 2}\) respectively, where p is the maximal eigenvalue of \(\rho \). Up to \(2^{\lambda _2}\), the sums of the eigenvalues of the two states are \(p 2^{\lambda _2-\lambda _1}\) and p respectively, thus the transition is only possible if \(p 2^{\lambda _2-\lambda _1} \ge p- \epsilon \).

  12. 12.

    This condition is independent of (32.34) only if \(\Gamma _\lambda \not \subseteq \Gamma \); if \(\Gamma _\lambda \) is chosen such that \(\Gamma _\lambda \subseteq \Gamma \) it is implied by (32.34).

  13. 13.

    Axiom (M1), for instance, follows since \((X,\tau _\lambda ) \prec ^ \epsilon (Y,\tau _\lambda )\) implies \((X,\tau _\lambda ,\chi _{\lambda _1},\chi _{\lambda _{2'}}) \prec ^ \epsilon (Y,\tau _\lambda ,\chi _{\lambda _1},\chi _{\lambda _{2'}})\) by (A4) and since by applying (32.36) and the property (A5) for \(X_\mathrm {ref}\) this can be shown to also imply \(X \prec ^ \epsilon Y\). (M2), (M3) and (M4) also follow from (32.36) and the axioms.

  14. 14.

    Axiom (E5) is, however, not implied by this.

  15. 15.

    In [49] the max entropy \(H_0^{ \epsilon }\) instead of \(H_\mathrm {H}^{1- \epsilon }\) is considered, however, the relation has also been proven for the latter [33].

  16. 16.

    This follows as the state \(\tau _{\lambda _n^{-}}\) has to be chosen such that it majorises \((1- \epsilon ) \rho ^{\otimes n}\). Furthermore, \(\rho ^{\otimes n}\) has to majorise \((1- \epsilon ) \tau _{\lambda _n^{+}}\), hence its rank has to be smaller than that of \(\tau _{\lambda _n^{+}}\).

References

  1. D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39(12), 2717–2753 (2000). arXiv:quant-ph/0002048

  2. M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059

    Article  ADS  Google Scholar 

  3. J.M. Renes, Work cost of thermal operations in quantum thermodynamics. Eur. Phys. J. Plus 129(7), 153 (2014). https://doi.org/10.1140/epjp/i2014-14153-8

    Article  Google Scholar 

  4. E.H. Lieb, J. Yngvason, A guide to entropy and the second law of thermodynamics. Not. Am. Math. Soc. A 581, 571–581 (1998). arXiv:math-ph/9805005

  5. E.H. Lieb, J. Yngvason, The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999). https://doi.org/10.1016/S0370-1573(98)00082-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E.H. Lieb, J. Yngvason, The mathematical structure of the second law of thermodynamics. in Current Developments in Mathematics (2001), pp. 89–129. https://doi.org/10.4310/CDM.2001.v2001.n1.a3

  7. E.H. Lieb, J. Yngvason, The entropy concept for non-equilibrium states. Proc. R. Soc. Math. Phys. Eng. Sci. 469(2158), 20130408 (2013). https://doi.org/10.1098/rspa.2013.0408

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. E.H. Lieb, J. Yngvason, Entropy meters and the entropy of non-extensive systems. Proc. R. Soc. Math. Phys. Eng. Sci. 470(2167), 20140192 (2014). https://doi.org/10.1098/rspa.2014.0192

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Thess, The Entropy Principle (Springer, Berlin Heidelberg, 2011). https://doi.org/10.1007/978-3-642-13349-7

    Book  MATH  Google Scholar 

  10. C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67(3), 355–386 (1909). https://doi.org/10.1007/BF01450409

    Article  MathSciNet  Google Scholar 

  11. R. Giles, Mathematical Foundations of Thermodynamics (Elsevier, Amsterdam, 1964)

    MATH  Google Scholar 

  12. E.P. Gyftopoulos, G.P. Beretta, Thermodynamics: Foundations and Applications (Macmillian, New York, 1991)

    Google Scholar 

  13. G.P. Beretta, E. Zanchini, Rigorous and general definition of thermodynamic entropy. inThermodynamics, ed. by M. Tadashi, Chapter 2, InTech (2011), pp. 23–50. https://doi.org/10.5772/13371

  14. E. Zanchini, G.P. Beretta, Recent progress in the definition of thermodynamic entropy. Entropy 16(3), 1547–1570 (2014). https://doi.org/10.3390/e16031547

    Article  ADS  MathSciNet  Google Scholar 

  15. G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part i. Postulates. Found. Phys. 6(1), 15–31 (1976). https://doi.org/10.1007/BF00708660

    Article  ADS  Google Scholar 

  16. G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iia. Available energy. Found. Phys. 6(2), 127–141 (1976). https://doi.org/10.1007/BF00708955

  17. G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iib. Stable equilibrium states. Found. Phys. 6(4), 439–455 (1976). https://doi.org/10.1007/BF00715033

    Article  ADS  MathSciNet  Google Scholar 

  18. G.N. Hatsopoulos, E.P. Gyftopoulos, A unified quantum theory of mechanics and thermodynamics. Part iii. Irreducible quantal dispersions. Found. Phys. 6(5), 561–570 (1976). https://doi.org/10.1007/BF00715108

    Article  ADS  MathSciNet  Google Scholar 

  19. L. del Rio, Resource theories of knowledge, Ph.D. thesis, ETH Zürich, 2015. https://doi.org/10.3929/ethz-a-010553983

  20. L.P. Krämer Gabriel, Restricted agents in thermodynamics and quantum information theory, Ph.D. thesis, ETH Zürich, 2016. https://doi.org/10.3929/ethz-a-010858172

  21. A. Hulse, B. Schumacher, M. Westmoreland, Axiomatic information thermodynamics. Entropy 20(4), 237 (2018). https://doi.org/10.3390/e20040237

    Article  ADS  Google Scholar 

  22. P. Kammerlander, R. Renner, The zeroth law of thermodynamics is redundant (2018). E-print arXiv:1804.09726

  23. T. Fritz, Resource convertibility and ordered commutative monoids. Math. Struct. Comp. Sci. 27(6), 850–938 (2017). https://doi.org/10.1017/S0960129515000444

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Weilenmann, L. Kraemer, P. Faist, R. Renner, Axiomatic relation between thermodynamic and information-theoretic entropies. Phys. Rev. Lett. 117, 260601 (2016). https://doi.org/10.1103/PhysRevLett.117.260601

    Article  ADS  MathSciNet  Google Scholar 

  25. Á.M. Alhambra, J. Oppenheim, C. Perry, Fluctuating states: what is the probability of a thermodynamical transition? Phys. Rev. X 6(4), 041016 (2016). https://doi.org/10.1103/PhysRevX.6.041016

    Article  Google Scholar 

  26. J. Gemmer, M. Michel, Thermalization of quantum systems by finite baths. Europhys. Lett. 73(1), 1 (2006). https://doi.org/10.1209/epl/i2005-10363-0

    Article  ADS  Google Scholar 

  27. C. Sparaciari, J. Oppenheim, T. Fritz, Resource theory for work and heat. Phys. Rev. A 96, 052112 (2017). https://doi.org/10.1103/PhysRevA.96.052112

    Article  ADS  Google Scholar 

  28. R. van der Meer, N.H.Y. Ng, S. Wehner, Smoothed generalized free energies for thermodynamics (2017). E-print. https://doi.org/10.1103/PhysRevA.96.062135

  29. M. Horodecki, J. Oppenheim, C. Sparaciari, Approximate majorization (2017). E-print. https://doi.org/10.1088/1751-8121/aac87c

  30. E.P. Hanson, N. Datta, Maximum and minimum entropy states yielding local continuity bounds. J. Math. Phys. 59(4), 042204 (2018). https://doi.org/10.1063/1.5000120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. E.P. Hanson, N. Datta, Tight uniform continuity bound for a family of entropies (2017). E-print arXiv:1707.04249

  32. M. Weilenmann, Quantum causal structure and quantum thermodynamics, Ph.D. thesis, University of York, 2017. Available at http://etheses.whiterose.ac.uk/19454/

  33. F. Dupuis, L. Kraemer, P. Faist, J.M. Renes, R. Renner, Generalized entropies, in XVIIth International Congress on Mathematical Physics (2013), pp. 134–153. https://doi.org/10.1142/9789814449243_0008

  34. J. Aberg, Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014). https://doi.org/10.1103/PhysRevLett.113.150402

    Article  ADS  Google Scholar 

  35. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. Europhys. Lett. 67(4), 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

  36. M. Horodecki, P. Horodecki, J. Oppenheim, Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67(6), 062104 (2003). https://doi.org/10.1103/PhysRevA.67.062104

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen De, U. Sen, Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90(10), 100402 (2003). https://doi.org/10.1103/PhysRevLett.90.100402

  38. G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015). https://doi.org/10.1016/j.physrep.2015.04.003

  39. R. Renner, S. Wolf, Simple and tight bounds for information reconciliation and privacy amplification, in Advances in Cryptology - ASIACRYPT 2005(Springer, Berlin, 2005), pp. 199–216. https://doi.org/10.1007/11593447_11

  40. R. König, R. Renner, C. Schaffner, The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009). https://doi.org/10.1109/TIT.2009.2025545

    Article  MathSciNet  MATH  Google Scholar 

  41. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. E.T. Jaynes, Information theory and statistical mechanics ii. Phys. Rev. 108, 171–190 (1957). https://doi.org/10.1103/PhysRev.108.171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. L. Kraemer, L. del Rio, Currencies in resource theories (2016). E-print arXiv:1605.01064

  44. M. Tomamichel, Modeling quantum information, in Quantum Information Processing with Finite Resources (Springer, Berlin, 2016), pp. 11–32. https://doi.org/10.1007/978-3-319-21891-5

    Book  MATH  Google Scholar 

  45. C.H. Bennett, The thermodynamics of computation—a review. Int. J. Theor. Phys. 21(12), 905–940 (1982). https://doi.org/10.1007/BF02084158

  46. W. van Dam, P. Hayden, Universal entanglement transformations without communication. Phys. Rev. A 67(6), 060302 (2003). https://doi.org/10.1103/PhysRevA.67.060302

    Article  MathSciNet  Google Scholar 

  47. N.H.Y. Ng, L. Manc̆inska, C. Cirstoiu, J. Eisert, S. Wehner, Limits to catalysis in quantum thermodynamics. N. J. Phys. 17(8), 085004 (2015). https://doi.org/10.1088/1367-2630/17/8/085004

    Article  MathSciNet  Google Scholar 

  48. F.G.S.L. Brandão, G. Gour, Reversible framework for quantum resource theories. Phys. Rev. Lett. 115(7), 070503 (2015). https://doi.org/10.1103/PhysRevLett.115.070503

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Tomamichel, R. Colbeck, R. Renner, A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009). https://doi.org/10.1109/TIT.2009.2032797

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Gour, I. Marvian, R.W. Spekkens, Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80(1), 012307 (2009). https://doi.org/10.1103/PhysRevA.80.012307

    Article  ADS  Google Scholar 

  51. L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011). https://doi.org/10.1038/nature10123

    Article  Google Scholar 

Download references

Acknowledgements

Philippe Faist is not listed as an author for editorial reasons. MW is supported by the EPSRC (grant number EP/P016588/1). RR acknowledges contributions from the Swiss National Science Foundation via the NCCR QSIT as well as project No. 200020 165843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam Weilenmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weilenmann, M., Krämer, L., Renner, R. (2018). Smooth Entropy in Axiomatic Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_32

Download citation

Publish with us

Policies and ethics