Skip to main content

Hierarchical Equations of Motion Approach to Quantum Thermodynamics

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

We present a theoretical framework to investigate quantum thermodynamic processes under non-Markovian system-bath interactions on the basis of the hierarchical equations of motion (HEOM) approach, which is convenient to carry out numerically “exact” calculations. This formalism is valuable because it can be used to treat not only strong system-bath coupling but also system-bath correlation or entanglement, which will be essential to characterize the heat transport between the system and quantum heat baths. Using this formalism, we demonstrated an importance of the thermodynamic effect from the bath-system-bath tri-partite correlations (TPC) for a two-level heat transfer model and a three-level autonomous heat engine model under the conditions that the conventional quantum master equation approaches are failed. Our numerical calculations show that TPC contributions, which distinguish the heat current from the energy current, have to be take into account to satisfy the thermodynamic laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Campisi, P. Hänggi, P. Talkner, Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83(3), 771 (2011). https://doi.org/10.1103/RevModPhys.83.771

  2. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83(3), 863 (2011). https://doi.org/10.1103/RevModPhys.83.863

  3. J. Eisert, M. Friesdorf, C. Gogolin, Quantum many-body systems out of equilibrium. Nat. Phys. 11(2), 124 (2015). https://doi.org/10.1038/nphys3215

    Article  Google Scholar 

  4. M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015). https://doi.org/10.1103/PhysRevX.5.021001

    Article  Google Scholar 

  5. K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. N. J. Phys. 18(2), 023045 (2016). https://doi.org/10.1088/1367-2630/18/2/023045

    Article  Google Scholar 

  6. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  7. R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15(12), 2100 (2013). https://doi.org/10.3390/e15062100

  8. P. Häggi, G.-L. Ingold, Fundamental aspects of quantum brownian motion. Chaos 15(2), 026105 (2005). https://doi.org/10.1063/1.1853631

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Harada, S. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95(13), 130602 (2005). https://doi.org/10.1103/PhysRevLett.95.130602

  10. K. Saito, Energy dissipation and fluctuation response in driven quantum langevin dynamics. Europhys. Lett. 83(5), 50006 (2008). https://doi.org/10.1209/0295-5075/83/50006

    Article  ADS  Google Scholar 

  11. P. Hofer, M. Perarnau-Llobet, L. Miranda, M. David, G. Haack, R. Silva, J.B. Brask, N. Brunner, Markovian master equations for quantum thermal machines: local versus global approach. N. J. Phys. 19(12), 123037 (2017). https://doi.org/10.1088/1367-2630/aa964f

  12. J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Testing the validity of the ‘local’ and ‘global’ GKLS master equations on an exactly solvable model. Open System and Information Dynamics 24(4), 1740010 (2017). https://doi.org/10.1142/S1230161217400108

  13. M.T. Mitchison, M.B. Plenio, Non-additive dissipation in open quantum networks out of equilibrium. N. J. Phys. 20(3), 033005 (2018). https://doi.org/10.1088/1367-2630/aa9f70

    Article  Google Scholar 

  14. A. Ishizaki, G. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130(23), 234111 (2009). https://doi.org/10.1063/1.3155372

    Article  ADS  Google Scholar 

  15. S. Huelga, M. Plenio, Vibrations, quanta and biology. Contemp. Phys. 54(4), 181 (2013). https://doi.org/10.1080/00405000.2013.829687

    Article  ADS  Google Scholar 

  16. I. de Vega, D. Alonso, Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89(1), 015001 (2017). https://doi.org/10.1103/RevModPhys.89.015001

  17. D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, Strongly coupled quantum heat machines. J. Phys. Chem. Lett. 6(17), 3477 (2015). https://doi.org/10.1021/acs.jpclett.5b01404

    Article  Google Scholar 

  18. P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. N. J. Phys. 18(7), 073007 (2016). https://doi.org/10.1088/1367-2630/18/7/073007

    Article  Google Scholar 

  19. D. Newman, F. Mintert, A. Nazir, Performance of a quantum heat engine at strong reservoir coupling. Phys. Rev. E 95(3), 032139 (2017). https://doi.org/10.1103/PhysRevE.95.032139

    Article  ADS  Google Scholar 

  20. M. Esposito, M.A. Ochoa, M. Galperin, Quantum thermodynamics: a nonequilibrium green’s function approach. Phys. Rev. Lett. 114(8), 080602 (2015). https://doi.org/10.1103/PhysRevLett.114.080602

  21. M. Esposito, M.A. Ochoa, M. Galperin, Nature of heat in strongly coupled open quantum systems. Phys. Rev. B 92(23), 235440 (2015). https://doi.org/10.1103/PhysRevB.92.235440

    Article  ADS  Google Scholar 

  22. A. Bruch, M. Thomas, S.V. Kusminskiy, F. von Oppen, A. Nitzan, Quantum thermodynamics of the driven resonant level model. Phys. Rev. B 93(11), 115318 (2016). https://doi.org/10.1103/PhysRevB.93.115318

    Article  ADS  Google Scholar 

  23. M. Carrega, P. Solinas, M. Sassetti, U. Weiss, Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116(24), 240403 (2016). https://doi.org/10.1103/PhysRevLett.116.240403

  24. R. Schmidt, M.F. Carusela, J.P. Pekola, S. Suomela, J. Ankerhold, Work and heat for two-level systems in dissipative environments: strong driving and non-markovian dynamics. Phys. Rev. B 91(22), 224303 (2015). https://doi.org/10.1103/PhysRevB.91.224303

    Article  ADS  Google Scholar 

  25. Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J. Phys. Soc. Jpn. 58(101), 101 (1989). https://doi.org/10.1143/JPSJ.58.101

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41(12), 6676 (1990). https://doi.org/10.1103/PhysRevA.41.6676

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Ishizaki, Y. Tanimura, Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach. J. Phys. Soc. Jpn. 74(12), 3131 (2005). https://doi.org/10.1143/JPSJ.74.3131

    Article  ADS  MATH  Google Scholar 

  28. Y. Tanimura, Stochastic liouville, langevin, fokker-planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75(8), 082001 (2006). https://doi.org/10.1143/JPSJ.75.082001

    Article  ADS  Google Scholar 

  29. Y. Tanimura, Reduced hierarchical equations of motion in real and imaginary time: correlated initial states and thermodynamic quantities. J. Chem. Phys. 141(4), 044114 (2014). https://doi.org/10.1063/1.4890441

    Article  ADS  Google Scholar 

  30. Y. Tanimura, Real-time and imaginary-time quantum hierarchal fokker-planck equations. J. Chem. Phys. 142(14), 144110 (2015). https://doi.org/10.1063/1.4916647

  31. A.G. Dijkstra, Y. Tanimura, Non-markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104(25), 250401 (2010). https://doi.org/10.1103/PhysRevLett.104.250401

  32. A.G. Dijkstra, Y. Tanimura, System bath correlations and the nonlinear response of qubits. J. Phys. Soc. Jpn. 81(6), 063301 (2012). https://doi.org/10.1143/JPSJ.81.063301

  33. A. Kato, Y. Tanimura, Quantum heat transport of a two-qubit system: interplay between system-bath coherence and qubit-qubit coherence. J. Chem. Phys. 143(6), 064107 (2015). https://doi.org/10.1063/1.4928192

    Article  ADS  Google Scholar 

  34. A. Kato, Y. Tanimura, Quantum heat current under non-perturbative and non-markovian conditions: applications to heat machines. J. Chem. Phys. 145(22), 224105 (2016). https://doi.org/10.1063/1.4971370

    Article  ADS  Google Scholar 

  35. C. Kreisbeck, T. Kramer, Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J. Phys. Chem. Lett. 3(19), 2828 (2012). https://doi.org/10.1021/jz3012029

    Article  Google Scholar 

  36. J. Ma, Z. Sun, X. Wang, F. Nori, Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85(6), 062323 (2012). https://doi.org/10.1103/PhysRevA.85.062323

    Article  ADS  Google Scholar 

  37. M. Tanaka, Y. Tanimura, Quantum dissipative dynamics of electron transfer reaction system: nonperturbative hierarchy equations approach. J. Phys. Soc. Jpn. 78(7), 073802 (2009). https://doi.org/10.1143/JPSJ.78.073802

    Article  ADS  Google Scholar 

  38. H. Liu, L. Zhu, S. Bai, Q. Shi, Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. J. Chem. Phys. 140(13), 134106 (2014). https://doi.org/10.1063/1.4870035

  39. Y. Tanimura, Reduced hierarchy equations of motion approach with drude plus brownian spectral distribution: probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys. 137(22), 22A550 (2012). https://doi.org/10.1063/1.4766931

    Article  Google Scholar 

  40. Z. Tang, O.Z. Gong, H. Wang, J. Wu, Extended hierarchy equation of motion for the spin-boson model. J. Chem. Phys. 143(22), 224112 (2015). https://doi.org/10.1063/1.4936924

    Article  ADS  Google Scholar 

  41. C. Duan, Z. Tang, J. Cao, J. Wu, Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys. Rev. B 95(21), 214308 (2017). https://doi.org/10.1103/PhysRevB.95.214308

    Article  ADS  Google Scholar 

  42. J. Jin, X. Zheng, Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J. Chem. Phys. 128(23), 234703 (2008). https://doi.org/10.1063/1.2938087

    Article  ADS  Google Scholar 

  43. R. Härtle, G. Cohen, D.R. Reichman, A.J. Millis, Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: a hierarchical quantum master equation approach. Phys. Rev. B 88(23), 235426 (2013). https://doi.org/10.1103/PhysRevB.88.235426

    Article  ADS  Google Scholar 

  44. L. Ye, X. Wang, D. Hou, R.-X. Xu, X. Zheng, Y. Yan, HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. WIREs Comput. Mol. Sci. 6(6), 608 (2016). https://doi.org/10.1002/wcms.1269

    Article  Google Scholar 

  45. J. Cerrillo, M. Buser, T. Brandes, Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-markovian regimes. Phys. Rev. B 94(21), 214308 (2016). https://doi.org/10.1103/PhysRevB.94.214308

    Article  ADS  Google Scholar 

  46. E. Aurell, The characteristic functions of quantum heat with baths at different temperatures. Phys. Rev. E 97, 062117 (2018). https://doi.org/10.1103/PhysRevE.97.062117

  47. S. Deffner, C. Jarzynski, Information processing and the second law of thermodynamics: an inclusive, hamiltonian approach. Phys. Rev. X 3(4), 041003 (2013). https://doi.org/10.1103/PhysRevX.3.041003

    Article  Google Scholar 

  48. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Quantum and information thermodynamics: a unifying framework based on repeated interactions. Phys. Rev. X 7(2), 021003 (2017). https://doi.org/10.1103/PhysRevX.7.021003

    Article  Google Scholar 

  49. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequillibrium Statistical Mechanics (Springer, Berlin, 1985). https://doi.org/10.1007/978-3-642-96701-6

  50. D. Segal, A. Nitzan, Spin-boson thermal rectifier. Phys. Rev. Lett. 94(3), 034301 (2005). https://doi.org/10.1103/PhysRevLett.94.034301

  51. K.A. Velizhanin, H. Wang, M. Thoss, Heat transport through model molecular junctions: a multilayer multiconfiguration time-dependent hartree approach. Chem. Phys. Lett. 460(1–3), 325 (2008). https://doi.org/10.1016/j.cplett.2008.05.065

    Article  ADS  Google Scholar 

  52. T. Ruokola, T. Ojanen, Thermal conductance in a spin-boson model: cotunneling and low-temperature properties. Phys. Rev. B 83(4), 045417 (2011). https://doi.org/10.1103/PhysRevB.83.045417

    Article  ADS  Google Scholar 

  53. C. Wang, J. Ren, J. Cao, Nonequilibrium energy transfer at nanoscale: a unified theory from weak to strong coupling. Sci. Rep. 5(1), 11787 (2015). https://doi.org/10.1038/srep11787

    Article  ADS  Google Scholar 

  54. S. Fujino, M. Fujiwara, M. Yoshida, BiCGSafe method based on minimization of associate residual. Trans. JSCES 8, 145 (2005). [in Japanese]. https://www.jstage.jst.go.jp/article/jsces/2005/0/2005_0_20050028/_article/-char/en

  55. J. Hu, R.X. Xu, Y.J. Yan, Communication: padé spectrum decomposition of fermi function and bose function. J. Chem. Phys. 133(10), 101106 (2010). https://doi.org/10.1063/1.3484491

    Article  ADS  Google Scholar 

  56. B.L. Tian, J.J. Ding, R.X. Xu, Y.J. Yan, Biexponential theory of drude dissipation via hierarchical quantum master equation. J. Chem. Phys. 133(11), 114112 (2010). https://doi.org/10.1063/1.3491270

    Article  ADS  Google Scholar 

  57. J. Hu, M. Luo, F. Jiang, R.-X. Xu, Y. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. J. Chem. Phys. 134(24), 244106 (2011). https://doi.org/10.1063/1.3602466

    Article  ADS  Google Scholar 

  58. J.E. Geusic, E.O. Schulz-DuBois, H.E.D. Scovil, Quantum equivalent of the carnot cycle. Phys. Rev. 156(2), 343 (1967). https://doi.org/10.1103/PhysRev.156.343

  59. M.P. Woods, N. Ng, S. Wehner, The maximum efficiency of nano heat engines depends on more than temperature. arXiv:1506.02322

  60. Y. Tanimura, P.G. Wolynes, The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: a numerical study. J. Chem. Phys. 96(11), 8485 (1992). https://doi.org/10.1063/1.462301

    Article  ADS  Google Scholar 

  61. A. Sakurai, Y. Tanimura, Self-excited current oscillations in a resonant tunneling diode described by a model based on the caldeira-leggett hamiltonian. N. J. Phys. 16(1), 015002 (2014). https://doi.org/10.1088/1367-2630/16/1/015002

    Article  Google Scholar 

  62. A. Kato, Y. Tanimura, Quantum suppression of ratchet rectification in a brownian system driven by a biharmonic force. J. Phys. Chem. B 117(42), 13132 (2013). https://doi.org/10.1021/jp403056h

    Article  Google Scholar 

  63. A. Sakurai, Y. Tanimura, Does \(\hbar \) play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations. J. Phys. Chem. A 115(16), 4009 (2011). https://doi.org/10.1021/jp1095618

  64. J. Strümpfer, K. Schulten, Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J. Chem. Theory Comput. 8(8), 2808 (2012). https://doi.org/10.1021/ct3003833

    Article  Google Scholar 

  65. M. Tsuchimoto, Y. Tanimura, Spins dynamics in a dissipative environment: hierarchal equations of motion approach using a Graphics Processing Unit (GPU). J. Chem. Theory Comput. 11(8), 3859 (2015). https://doi.org/10.1021/acs.jctc.5b00488

    Article  Google Scholar 

  66. C. Kreisbeck, T. Kramer, M. Rodríguez, B. Hein, High-performance solution of hierarchical equations of motion for studying energy transfer in light-harvesting complexes. J. Chem. Theory Comput. 7(7), 2166 (2011). https://doi.org/10.1021/ct200126d

    Article  Google Scholar 

  67. C. Kreisbeck, T. Kramer, A. Aspuru-Guzik, Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10(9), 4045 (2014). https://doi.org/10.1021/ct500629s

  68. D. Suess, A. Eisfeld, W.T. Strunz, Hierarchy of stochastic pure states for open quantum system dynamics. Phys. Rev. Lett. 113(15), 150403 (2014). https://doi.org/10.1103/PhysRevLett.113.150403

  69. K. Song, L. Song, Q. Shi, An alternative realization of the exact non-markovian stochastic schrödinger equation. J. Chem. Phys. 144(22), 224105 (2016). https://doi.org/10.1063/1.4953244

    Article  ADS  Google Scholar 

  70. Y. Ke, Y. Zhao, Hierarchy of forward-backward stochastic schröinger equation. J. Chem. Phys. 145(2), 024101 (2016). https://doi.org/10.1063/1.4955107

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for motivating us to write this article with Yoshi Oono. A. K. is supported by JSPS KAKENHI Grant Number 17H02946. Y. T. is supported by JSPS KAKENHI Grant Number A26248005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Tanimura .

Editor information

Editors and Affiliations

Appendices

Appendix A: Derivation of Equation (24.6)

The heat current is defined as the rate of decrease of the bath energy, \(\dot{Q}_{\mathrm {HC},k} (t) = - d\langle { \hat{H}_\mathrm {bath}^{(k)} } (t)) \rangle /dt\), which can be rewritten by using the Heisenberg equations for \( { \hat{H}_\mathrm {int}^{(k)} } \) and \( { \hat{H}_\mathrm {bath}^{(k)} } \) as

$$\begin{aligned} \dot{Q}_{\mathrm {HC},k}(t)&= { \frac{i}{\hbar } } \left\langle \left[ { \hat{H}_\mathrm {bath}^{(k)} } (t), { \hat{H}_\mathrm {int}^{(k)} } (t) \right] \right\rangle \nonumber \\&= { \frac{i}{\hbar } } \left\langle \left[ { \hat{H}_\mathrm {int}^{(k)} } (t), { \hat{H}_\mathrm {sys} } (t) \right] \right\rangle + { \frac{d}{dt} } \left\langle { \hat{H}_\mathrm {int}^{(k)} } (t) \right\rangle + \sum _{k^\prime } { \frac{i}{\hbar } } \left\langle \left[ { \hat{H}_\mathrm {int}^{(k)} } (t), { \hat{H}_\mathrm {int}^{(k^\prime )} } (t) \right] \right\rangle . \end{aligned}$$
(24.16)

The first term of r.h.s. of Eq. (24.16) is related to the energy flow to the kth bath via the energy conservation equation for \( { \hat{H}_\mathrm {sys} } \) as \( { \frac{d}{dt} } \langle { \hat{H}_\mathrm {sys} } (t) \rangle = \dot{W}(t) + \sum _k \dot{Q}_{\mathrm {SEC},k}(t)\), where \(\dot{Q}_{\mathrm {SEC},k}(t) = (i/\hbar ) \langle [ { \hat{H}_\mathrm {int}^{(k)} } (t), { \hat{H}_\mathrm {sys} } (t) ] \rangle \). Therefore, by using the above definition for \(\dot{Q}_{\mathrm {SEC},k}(t)\) and Eqs. (24.8), (24.6) is derived.

Appendix B: Derivation of Equation (24.14)

To derive Eq. (24.14), we adapt a generating functional approach by adding the source term, \(f_k(t)\), for the kth interaction Hamiltonian as

$$\begin{aligned} \hat{V}_k \hat{X}_k \rightarrow \hat{V}_{k,f}(t) \hat{X}_k \equiv \left( \hat{V}_k + f_k(t) \right) \hat{X}_k \end{aligned}$$
(24.17)

Here, in order to evaluate an expectation value, we add the source term to the ket (left) side of the density operator, which does not change a role of the system-bath interaction in the time-evolution operator. This source term enables us to have a collective bath coordinate with the functional derivative as

$$\begin{aligned} \tilde{X}_k(t) \tilde{\rho }_\mathrm {tot}(t) = i \hbar \frac{\delta }{\delta f_k(t)} \left. \tilde{\rho }_{\mathrm {tot},f}(t) \right| _{f \equiv 0}. \end{aligned}$$
(24.18)

Then, the expectation value of the operator \(\hat{Z}_k \equiv \hat{A} \hat{X}_k\) for any system operator \(\hat{A}\) reads

$$\begin{aligned} \left\langle \hat{Z}_k(t) \right\rangle&= \mathrm {Tr}_\mathrm {sys} \left[ \tilde{A}(t) i\hbar \left. \frac{\delta }{\delta f_k(t)} \tilde{\rho }_f(t) \right| _{f\equiv 0} \right] \nonumber \\&= \frac{2}{\hbar } \int _0^t d\tau \, \mathrm {Im} \left[ C_k(t-\tau ) \left\langle \hat{A}(t) \hat{V}_k(\tau ) \right\rangle \right] . \end{aligned}$$
(24.19)

Next, the kth HC, Eq. (24.6), is rewritten by using the Heisenberg equation for \(\hat{V}_k\) as \(\dot{Q}_k(t) = { \frac{d}{dt} } \langle \hat{H}_\mathrm {int}^{(k)}(t) \rangle - \langle ( { \frac{d}{dt} } \hat{V}_k(t) ) \hat{X}_k(t) \rangle \). The time derivatives, \( { \frac{d}{dt} } \langle \hat{H}_\mathrm {int}^{(k)}(t) \rangle \) and \(\langle ( { \frac{d}{dt} } \hat{V}_k(t) ) \hat{X}_k(t) \rangle \), are given by the time differentiation of Eq. (24.19) for \(\hat{A} = \hat{V}_k\) and Eq. (24.19) for \(\hat{A} = { \frac{d}{dt} } \hat{V}_k\), respectively. This immediately leads to the expression for the kth HC in Eq. (24.14).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, A., Tanimura, Y. (2018). Hierarchical Equations of Motion Approach to Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_24

Download citation

Publish with us

Policies and ethics