Skip to main content

Thermodynamic Principles and Implementations of Quantum Machines

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

The efficiency of cyclic heat engines is limited by the Carnot bound. This bound follows from the second law of thermodynamics and is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. By contrast, the efficiency of engines powered by quantum non-thermal baths has been claimed to surpass the thermodynamic Carnot bound. The key to understanding the performance of such engines is a proper division of the energy supplied by the bath to the system into heat and work, depending on the associated change in the system entropy and ergotropy. Due to their hybrid character, the efficiency bound for quantum engines powered by a non-thermal bath does not solely follow from the laws of thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such hybrid engines. Yet, they do not violate the principles of thermodynamics. An alternative means of boosting machine performance is the concept of heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of the piston mode. This enhancement is due to the increased ability of the squeezed piston to store ergotropy. Since the catalyzed machine is fueled by thermal baths, it adheres to the Carnot bound. We conclude by arguing that it is not quantumness per se that improves the machine performance, but rather the properties of the baths, the working fluid and the piston that boost the ergotropy and minimize the wasted heat in both the input and the output.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.  Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824). https://doi.org/10.3931/e-rara-9118

  2. D.  Kondepudi, I.  Prigogine, Modern Thermodynamics, 2nd ed. (Wiley, Chichester, 2015). https://doi.org/10.1002/9781118698723

  3. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003). https://doi.org/10.1126/science.1078955

    Article  ADS  Google Scholar 

  4. R.  Dillenschneider, E.  Lutz, Energetics of quantum correlations. EPL (Europhys. Lett.) 88, 50003 (2009). https://doi.org/10.1209/0295-5075/88/50003

  5. X.L. Huang, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012). https://doi.org/10.1103/PhysRevE.86.051105

    Article  ADS  Google Scholar 

  6. O.  Abah, E.  Lutz, Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhys. Lett.) 106, 20001 (2014). https://doi.org/10.1209/0295-5075/106/20001

  7. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602

  8. A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015). https://doi.org/10.1038/srep12953

    Article  ADS  Google Scholar 

  9. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum non-thermal baths. New J. Phys. 18, 083012 (2016). https://doi.org/10.1088/1367-2630/18/8/083012

    Article  ADS  Google Scholar 

  10. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016). https://doi.org/10.1103/PhysRevE.93.052120

    Article  ADS  Google Scholar 

  11. J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7, 031044 (2017). https://doi.org/10.1103/PhysRevX.7.031044

    Article  Google Scholar 

  12. B.K. Agarwalla, J.-H. Jiang, D. Segal, Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B 96, 104304 (2017). https://doi.org/10.1103/PhysRevB.96.104304

    Article  ADS  Google Scholar 

  13. R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamics of quantum information systems –Hamiltonian description. Open Syst. Inf. Dyn. 11, 205 (2004). https://doi.org/10.1023/B:OPSY.0000047566.72717.71

    Article  MathSciNet  MATH  Google Scholar 

  14. H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007). https://doi.org/10.1103/PhysRevE.76.031105

    Article  ADS  MathSciNet  Google Scholar 

  15. J.  Gemmer, M.  Michel, G.  Mahler, Quantum Thermodynamics, 2nd ed. (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-70510-9

  16. N. Linden, S. Popescu, P. Skrzypczyk, How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010). https://doi.org/10.1103/PhysRevLett.105.130401

  17. R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev. Lett. 109, 160601 (2012). https://doi.org/10.1103/PhysRevLett.109.160601

  18. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012). https://doi.org/10.1103/PhysRevLett.109.203006

  19. D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Minimal universal quantum heat machine. Phys. Rev. E 87, 012140 (2013a). https://doi.org/10.1103/PhysRevE.87.012140

    Article  ADS  Google Scholar 

  20. R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100 (2013). https://doi.org/10.3390/e15062100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014). https://doi.org/10.1038/srep06208

    Article  ADS  Google Scholar 

  22. D. Gelbwaser-Klimovsky, G. Kurizki, Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys. Rev. E 90, 022102 (2014). https://doi.org/10.1103/PhysRevE.90.022102

    Article  ADS  Google Scholar 

  23. R. Kosloff, A. Levy, Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365 (2014). https://doi.org/10.1146/annurev-physchem-040513-103724

    Article  ADS  Google Scholar 

  24. P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185

    Article  ADS  Google Scholar 

  25. F. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantum thermodynamics of general quantum processes. Phys. Rev. E 91, 032119 (2015). https://doi.org/10.1103/PhysRevE.91.032119

  26. D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Thermodynamics of quantum systems under dynamical control. Adv. At. Mol. Opt. Phys. 64, 329 (2015). https://doi.org/10.1016/bs.aamop.2015.07.002

    Article  ADS  Google Scholar 

  27. R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015). https://doi.org/10.1103/PhysRevX.5.031044

    Article  Google Scholar 

  28. R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016). https://doi.org/10.3390/e18040124

    Article  ADS  Google Scholar 

  29. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016). https://doi.org/10.1080/00107514.2016.1201896

    Article  Google Scholar 

  30. J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016). https://doi.org/10.1126/science.aad6320

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.  Klatzow, J.N. Becker, P.M. Ledingham, C.  Weinzetl, K.T. Kaczmarek, D.J. Saunders, J.  Nunn, I.A. Walmsley, R.  Uzdin, E.  Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines (2017). arXiv:1710.08716

  32. C.B. Dağ, W. Niedenzu, Ö.E. Müstecaplıoğlu, G. Kurizki, Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18, 244 (2016). https://doi.org/10.3390/e18070244

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018). https://doi.org/10.1038/s41467-017-01991-6

    Article  ADS  Google Scholar 

  34. A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Catalysis of heat-to-work conversion in quantum machines. Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017). https://doi.org/10.1073/pnas.1711381114

  35. R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979). https://doi.org/10.1088/0305-4470/12/5/007

    Article  ADS  Google Scholar 

  36. R. Kosloff, A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 80, 1625 (1984). https://doi.org/10.1063/1.446862

    Article  ADS  Google Scholar 

  37. E. Boukobza, D.J. Tannor, Three-level systems as amplifiers and attenuators: a thermodynamic analysis. Phys. Rev. Lett. 98, 240601 (2007). https://doi.org/10.1103/PhysRevLett.98.240601

  38. J.M.R. Parrondo, C.V. den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11, 073008 (2009). https://doi.org/10.1088/1367-2630/11/7/073008

  39. S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011). https://doi.org/10.1103/PhysRevLett.107.140404

  40. E. Boukobza, H. Ritsch, Breaking the carnot limit without violating the second law: a thermodynamic analysis of off-resonant quantum light generation. Phys. Rev. A 87, 063845 (2013). https://doi.org/10.1103/PhysRevA.87.063845

  41. T.  Sagawa, in Lectures on Quantum Computing, Thermodynamics and Statistical Physics, ed. by M.  Nakahara, S.  Tanaka (World Scientific, Singapore, 2013), pp. 125–190. https://doi.org/10.1142/9789814425193_0003

  42. G.  Argentieri, F.  Benatti, R.  Floreanini, M.  Pezzutto, Violations of the second law of thermodynamics by a non-completely positive dynamics. EPL (Europhys. Lett.) 107, 50007 (2014). https://doi.org/10.1209/0295-5075/107/50007

  43. K. Brandner, U. Seifert, Periodic thermodynamics of open quantum systems. Phys. Rev. E 93, 062134 (2016). https://doi.org/10.1103/PhysRevE.93.062134

    Article  ADS  Google Scholar 

  44. H.-P. Breuer, F.  Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  45. H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978). https://doi.org/10.1063/1.523789

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273 (1978). https://doi.org/10.1007/BF01614224

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575 (1978). https://doi.org/10.1007/BF01011769

    Article  ADS  Google Scholar 

  48. A.E. Allahverdyan, R.  Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. EPL (Europhys. Lett.) 67, 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

  49. R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013). https://doi.org/10.1103/PhysRevE.87.042123

    Article  ADS  Google Scholar 

  50. F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015b). https://doi.org/10.1088/1367-2630/17/7/075015

    Article  ADS  Google Scholar 

  51. N.  Friis, M.  Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018). https://doi.org/10.22331/q-2018-04-23-61

  52. D.  Gelbwaser-Klimovsky, R.  Alicki, G.  Kurizki, Work and energy gain of heat-pumped quantized amplifiers. EPL (Europhys. Lett.) 103, 60005 (2013). https://doi.org/10.1209/0295-5075/103/60005

  53. J. Anders, V. Giovannetti, Thermodynamics of discrete quantum processes. New J. Phys. 15, 033022 (2013). https://doi.org/10.1088/1367-2630/15/3/033022

    Article  ADS  MathSciNet  Google Scholar 

  54. P. Skrzypczyk, R. Silva, N. Brunner, Passivity, complete passivity, and virtual temperatures. Phys. Rev. E 91, 052133 (2015). https://doi.org/10.1103/PhysRevE.91.052133

    Article  ADS  MathSciNet  Google Scholar 

  55. E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016). https://doi.org/10.1088/1367-2630/18/11/113028

    Article  ADS  Google Scholar 

  56. G. De Palma, A. Mari, S. Lloyd, V. Giovannetti, Passive states as optimal inputs for single-jump lossy quantum channels. Phys. Rev. A 93, 062328 (2016). https://doi.org/10.1103/PhysRevA.93.062328

    Article  ADS  Google Scholar 

  57. R. Alicki, From the GKLS equation to the theory of solar and fuel cells. Open Syst. Inf. Dyn. 24, 1740007 (2017). https://doi.org/10.1142/S1230161217400078

    Article  MathSciNet  MATH  Google Scholar 

  58. N. Erez, G. Gordon, M. Nest, G. Kurizki, Thermodynamic control by frequent quantum measurements. Nature 452, 724 (2008). https://doi.org/10.1038/nature06873

    Article  ADS  Google Scholar 

  59. F. Schlögl, Zur statistischen Theorie der Entropieproduktion in nicht abgeschlossenen Systemen. Z. Phys. 191, 81 (1966). https://doi.org/10.1007/BF01362471

    Article  ADS  MathSciNet  Google Scholar 

  60. A.K. Ekert, P.L. Knight, Canonical transformation and decay into phase-sensitive reservoirs. Phys. Rev. A 42, 487 (1990). https://doi.org/10.1103/PhysRevA.42.487

    Article  ADS  Google Scholar 

  61. C.W. Gardiner, P.  Zoller, Quantum Noise, 2nd ed. (Springer, Berlin, 2000)

    Google Scholar 

  62. V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Speed and efficiency limits of multilevel incoherent heat engines. Phys. Rev. E 94, 062109 (2016). https://doi.org/10.1103/PhysRevE.94.062109

    Article  ADS  Google Scholar 

  63. T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107 (2006). https://doi.org/10.1103/PhysRevE.73.025107

    Article  ADS  Google Scholar 

  64. R. Kosloff, Y. Rezek, The quantum harmonic otto cycle. Entropy 19, 136 (2017). https://doi.org/10.3390/e19040136

    Article  ADS  Google Scholar 

  65. R. Graham, Squeezing and frequency changes in harmonic oscillations. J. Mod. Opt. 34, 873 (1987). https://doi.org/10.1080/09500348714550801

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. G.S. Agarwal, S.A. Kumar, Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states. Phys. Rev. Lett. 67, 3665 (1991). https://doi.org/10.1103/PhysRevLett.67.3665

  67. I. Averbukh, B. Sherman, G. Kurizki, Enhanced squeezing by periodic frequency modulation under parametric instability conditions. Phys. Rev. A 50, 5301 (1994). https://doi.org/10.1103/PhysRevA.50.5301

    Article  ADS  Google Scholar 

  68. R. Alicki, D. Gelbwaser-Klimovsky, Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015). https://doi.org/10.1088/1367-2630/17/11/115012

    Article  ADS  Google Scholar 

  69. D. Türkpençe, Ö.E. Müstecaplıoğlu, Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93, 012145 (2016). https://doi.org/10.1103/PhysRevE.93.012145

  70. C. B. Dağ, W.  Niedenzu, F.  Ozaydin, Ö.E. Müstecaplıoğlu, G.  Kurizki, Temperature Control in Dissipative Cavities by Entangled Dimers. J. Phys. Chem. C (accepted, 2019 in press). https://doi.org/10.1021/acs.jpcc.8b11445

  71. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014). https://doi.org/10.1103/RevModPhys.86.1391

  72. A.  Ghosh, D.  Gelbwaser-Klimovsky, W.  Niedenzu, A.I.  Lvovsky, I.  Mazets, M.O. Scully, G.  Kurizki, Two-level masers as heat-to-work converters. Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018). https://doi.org/10.1073/pnas.1805354115

  73. J. Górecki, W. Pusz, Passive states for finite classical systems. Lett. Math. Phys. 4, 433 (1980). https://doi.org/10.1007/BF00943428

    Article  ADS  MathSciNet  Google Scholar 

  74. H.A.M. Daniëls, Passivity and equilibrium for classical Hamiltonian systems. J. Math. Phys. 22, 843 (1981). https://doi.org/10.1063/1.524949

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. J. da Providência, C. Fiolhais, Variational formulation of the Vlasov equation. J. Phys. A: Math. Gen. 20, 3877 (1987). https://doi.org/10.1088/0305-4470/20/12/034

    Article  ADS  MATH  Google Scholar 

  76. M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, H.J. Kimble, Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 023816 (2010). https://doi.org/10.1103/PhysRevA.81.023816

    Article  ADS  Google Scholar 

  77. R.J. Glauber, Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766 (1963). https://doi.org/10.1103/PhysRev.131.2766

  78. V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002). https://doi.org/10.1088/1464-4266/4/1/201

    Article  ADS  MathSciNet  Google Scholar 

  79. M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494 (1989). https://doi.org/10.1103/PhysRevA.40.2494

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with A. G. Kofman and support from ISF, DFG and VATAT. W. N. acknowledges support from an ESQ fellowship of the Austrian Academy of Sciences (ÖAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Kurizki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Niedenzu, W., Mukherjee, V., Kurizki, G. (2018). Thermodynamic Principles and Implementations of Quantum Machines. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_2

Download citation

Publish with us

Policies and ethics