Skip to main content

The Coherent Crooks Equality

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

This chapter reviews an information theoretic approach (Part V) to deriving quantum fluctuation theorems (see Chap. 10) that was developed in [37, 38]. When a thermal system is driven from equilibrium, random quantities of work are required or produced: the Crooks equality is a classical fluctuation theorem that quantifies the probabilities of these work fluctuations. The framework summarised here generalises the Crooks equality to the quantum regime by modeling not only the driven system but also the control system and energy supply that enables the system to be driven. As is reasonably common within the information theoretic approach but high unusual for fluctuation theorems, this framework explicitly accounts for the energy conservation using only time independent Hamiltonians. We focus on explicating a key result of [37]: a Crooks-like equality for when the energy supply is allowed to exist in a superposition of energy eigenstates states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the term ‘coherence’ in the sense of a ‘superposition of states belonging to different energy eigenspaces’.

  2. 2.

    To avoid a proliferation of notation we here use the symbol \( \mathcal{T} \) to denote both a mapping on the level of Hilbert spaces and a map on the space of operators on the Hilbert space.

  3. 3.

    The global invariance and factorisability conditions can be naturally reformulated in terms of the Gibbs map. If we define the transition probability from a state \(G_{\rho _A}(H, T)\) to a state \(\rho _B\) as \(P(\rho _B|G_{\rho _A}(H, T)) := {{\,\mathrm{Tr}\,}}[ \rho _B V G_{\rho _A}(H, T) V^\dagger ]\), then global invariance can be rewritten as \(P(\rho _f | G_{\rho _i}(H, T))/P( \mathcal{T} (\rho _i)|G_{ \mathcal{T} (\rho _f)}(H, \, T)) = \tilde{Z}_{ \mathcal{T} (\rho _f)}(H, T)/\tilde{Z}_{\rho _i}(H, T)\). The bipartite setup is factorisable if \(G_{\rho _M \otimes \rho _S}(H_{MS}, T) = G_{\rho _M}(H_M, T) \otimes G_{\rho _S}(H_S, T) \) and \(\tilde{Z}_{\rho _M \otimes \rho _S}(H_{MS}, T) = \tilde{Z}_{\rho _M}(H_M, T) \otimes \tilde{Z}_{\rho _S}(H_S, T)\).

References

  1. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81(4), 1665–1702 (2009). https://doi.org/10.1103/RevModPhys.81.1665

  2. M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83(3), 771–791 (2011). https://doi.org/10.1103/RevModPhys.83.771

  3. P. Hänggi, P. Talkner, The other QFT. Nat. Phys. 11(2), 108–110 (2015). https://doi.org/10.1038/nphys3167

  4. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57(4), 545–579 (2016). https://doi.org/10.1080/00107514.2016.1201896

  5. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999). https://doi.org/10.1103/PhysRevE.60.2721

  6. C. Jarzynski, How does a system respond when driven away from thermal equilibrium? Proc. Natl. Acad. Sci. 98(7), 3636–3638 (2001). https://doi.org/10.1073/pnas.081074598

  7. H. Tasaki, Jarzynski relations for quantum systems and some applications (2000). arXiv:cond-mat/0009244

  8. J. Kurchan, A quantum fluctuation theorem. (2000). arXiv:cond-mat/0007360

  9. P. Talkner, P. Hänggi, The Tasaki Crooks quantum fluctuation theorem. J. Phys. A: Math. Theor. 40(26), F569 (2007). https://doi.org/10.1088/1751-8113/40/26/F08

  10. M. Campisi, P. Talkner, P. Hänggi, Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102(21), 210401 (2009). https://doi.org/10.1103/PhysRevLett.102.210401

  11. C.J. Jarzynski, Nonequilibrium work theorem for a system strongly coupled to a thermal environment. Stat. Mech. 2004(9), P09005 (2004). https://doi.org/10.1088/1742-5468/2004/09/P09005

  12. G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E 92(3), 032129 (2015). https://doi.org/10.1103/PhysRevE.92.032129

  13. T. Albash, D.A. Lidar, M. Marvian, P. Zanardi, Fluctuation theorems for quantum processes. Phys. Rev. E 88(3), 032146 (2013). https://doi.org/10.1103/PhysRevE.88.032146

    Article  ADS  Google Scholar 

  14. A.E. Rastegin, Non-equilibrium equalities with unital quantum channels. J. Stat. Mech. 2013(06), P06016 (2013). https://doi.org/10.1088/1742-5468/2013/06/P06016

  15. P. Talkner, P. Hänggi, Aspects of quantum work. Phys. Rev. E 93(2), 022131 (2016). https://doi.org/10.1103/PhysRevE.93.022131

    Article  ADS  Google Scholar 

  16. M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, No-Go Tteorem for the characterization of work fluctuations in coherent quantum systems. Phys. Rev. Lett. 118(7), 070601 (2017). https://doi.org/10.1103/PhysRevLett.118.070601

  17. M. Lostaglio, Quantum fluctuation theorems, contextuality, and work quasiprobabilities. Phys. Rev. Lett. 120(4), 040602 (2018). https://doi.org/10.1103/PhysRevLett.120.040602

  18. A. E. Allahverdyan, Nonequilibrium quantum fluctuations of work. Phys. Rev. E 90(3), 032137 (2014). https://doi.org/10.1103/PhysRevE.90.032137

  19. P. Solinas, H.J.D. Miller, J. Anders, Measurement-dependent corrections to work distributions arising from quantum coherences. Phys. Rev. A 96(5), 052115 (2017). https://doi.org/10.1103/PhysRevA.96.052115

    Article  ADS  Google Scholar 

  20. H.J.D. Miller, J. Anders, Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework. New J. Phys. 19(6), 062001 (2017). https://doi.org/10.1088/1367-2630/aa703f

  21. J.M. Horowitz, Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. Phys. Rev. E 85(3), 031110 (2012). https://doi.org/10.1103/PhysRevE.85.031110

  22. C. Elouard, D.A. Herrera-Martí, M. Clusel, A. Auffeves, The role of quantum measurement in stochastic thermodynamics. NPJ Quantum Inf. 3(1), 9 (2017). https://doi.org/10.1038/s41534-017-0008-4

  23. F.G.S.L. Brandao, M.B. Plenio, Entanglement theory and the second law of thermodynamics. Nat. Phys. 4(11), 873 (2008). https://doi.org/10.1038/nphys1100

  24. L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61 (2011). https://doi.org/10.1038/nature10123

  25. D. Jennings, T. Rudolph, Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81(6), 061130 (2010). https://doi.org/10.1103/PhysRevE.81.061130

  26. S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics. Nat. Phys. 2(11), 754–758 (2006). https://doi.org/10.1038/nphys444

  27. J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013). https://doi.org/10.1038/ncomms2712

    Article  ADS  Google Scholar 

  28. J. Åberg, Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014). https://doi.org/10.1103/PhysRevLett.113.150402

  29. K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence. New J. Phys. 18(2), 023045 (2016). https://doi.org/10.1088/1367-2630/18/2/023045

  30. F.G.S.L. Brandao, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. PNAS 112(11), 3275–3279 (2015). https://doi.org/10.1073/pnas.1411728112

  31. M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015). https://doi.org/10.1038/ncomms7383

    Article  ADS  Google Scholar 

  32. M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013), http://doi.org/10.1038/ncomms3059

  33. G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, Quantum majorization and a complete set of entropic conditions for quantum thermodynamics (2017). https://doi.org/10.1038/s41467-018-06261-7

  34. D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Thermodynamic cost of reliability and low temperatures: Tightening Landauer’s principle and the Second law. Int. J. Theor. Phys. 39(12), 2717–2753 (2000). https://doi.org/10.1023/A:1026422630734

  35. F.G.S.L. Brandao, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111(25), 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404

  36. M. Horodecki, Fundamental limitations for quantum and nanoscale thermodynamics. J. Oppenheim, Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059

  37. J. Åberg, Fully quantum fluctuation theorems. Phys. Rev. X 8, 011019 (2018). https://doi.org/10.1103/PhysRevX.8.011019

  38. Á.M. Alhambra, L. Masanes, Fluctuating work: From quantum thermodynamical identities to a second law equality. J. Oppenheim, C. Perry, Phys. Rev. X 6(4), 041017 (2016). https://doi.org/10.1103/PhysRevX.6.041017

  39. L.E. Ballentine, Quantum Mechanics: A Modern Development (World scientific, 1998). https://doi.org/10.1142/3142

  40. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  41. Z. Holmes, S. Weidt, D. Jennings, J. Anders, F. Mintert, Coherent fluctuation relations: from the abstract to the concrete (2018), arXiv:1806.11256

  42. M. Frenzel, D. Jennings, T. Rudolph, Quasi-autonomous quantum thermal machines and quantum to classical energy flow. New J. Phys. 18(2), 023037 (2016). https://doi.org/10.1088/1367-2630/18/2/023037

  43. M.P. Woods, R. Silva, Autonomous quantum machines and finite sized clocks. J. Oppenheim (2016). https://doi.org/10.1007/s00023-018-0736-9

  44. A.S.L. Malabarba, A.J. Short, P. Kammerlander, Clock-driven quantum thermal engines. New J. Phys. 17(4), 045027 (2015). https://doi.org/10.1088/1367-2630/17/4/045027

  45. E. Hinds Mingo, D. Jennings, Superpositions of mechanical processes, decomposable coherence and fluctuation relations (2018). arXiv:1812.08159

  46. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

  47. A. Streltsov, G. Adesso, M.B. Plenio, Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017). https://doi.org/10.1103/RevModPhys.89.041003

  48. G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N.Y. Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015). https://doi.org/10.1016/j.physrep.2015.04.003

  49. D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986). https://doi.org/10.1007/BF01212345

  50. S. D. Bartlett, T. Rudolph, R. W. Spekkens, Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79(2), 555–609 (2007). https://doi.org/10.1103/RevModPhys.79.555

Download references

Acknowledgements

The author thanks Johan Åberg, Álvaro Alhambra, Janet Anders, Florian Mintert, Erick Hinds Mingo, Tom Hebdige and Jake Lishman for commenting on drafts and David Jennings for numerous indispensable discussions. The author is supported by the Engineering and Physical Sciences Research Council Centre for Doctoral Training in Controlled Quantum Dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holmes, Z. (2018). The Coherent Crooks Equality. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_12

Download citation

Publish with us

Policies and ethics