Skip to main content

High Performance Mechanochromic Luminescent Materials from AIEgens

  • Chapter
  • First Online:
  • 1866 Accesses

Abstract

Mechanochromic luminescent (MCL) materials, capable of changing their photophysical properties in response to mechanical stimuli, have formed an integral part of functional materials over the last 20 years. Those with aggregation-induced emission (AIE) are more reliable and practical, as they are endowed with high-contrast ratio and thus offer the potential to enable various high-tech applications, including pressure sensor, optical storage, and deformation detection. In this chapter, we introduce the concept of MCL and focus on two types of AIE-active MCL systems, i.e., high color contrast and high efficiency contrast. The potential benefits and challenges of the presented examples were discussed. Based on limited numbers of examples that reported the crystallographic structure or quantum chemistry calculation, we highlighted how mechanistic knowledge has advanced the material design and performance optimization in both types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fares M et al (2018) A molecular rotor-based halo-tag ligand enables a fluorogenic proteome stress sensor to detect protein misfolding in mildly stressed proteome. Bioconjug Chem 29(1):215–224

    Article  CAS  Google Scholar 

  2. Lee T et al (2016) Transparent ITO mechanical crack-based pressure and strain sensor. J Mater Chem C 4(42):9947–9953

    Article  CAS  Google Scholar 

  3. Zeng S et al (2016) Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat Commun 7:11802

    Article  CAS  Google Scholar 

  4. Zhang Y et al (2016) Ratiometric pressure sensors based on cyano-substituted oligo(p-phenylene vinylene) derivatives in the hybridized local and charge-transfer excited state. J Mater Chem C 4(42):9954–9960

    Article  CAS  Google Scholar 

  5. Roberts DRT, Holder SJ (2011) Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials. J Mater Chem 21(23):8256

    Article  CAS  Google Scholar 

  6. Butler T et al (2017) Camera method for monitoring a mechanochromic luminescent beta-diketone dye with rapid recovery. ACS Appl Mater Interfaces 9(20):17603–17612

    Article  CAS  Google Scholar 

  7. Zhang X et al (2017) Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties. Mater Chem Front 1(6):1041–1050

    Article  CAS  Google Scholar 

  8. Hariharan PS et al (2016) Halochromic isoquinoline with mechanochromic triphenylamine: smart fluorescent material for rewritable and self-erasable fluorescent platform. ACS Appl Mater Interfaces 8(48):33034–33042

    Article  CAS  Google Scholar 

  9. Lavrenova A et al (2017) Mechano- and thermoresponsive photoluminescent supramolecular polymer. J Am Chem Soc 139(12):4302–4305

    Article  CAS  Google Scholar 

  10. Mo S et al (2017) Tunable mechanoresponsive self-assembly of an amide-linked dyad with dual sensitivity of photochromism and mechanochromism. Adv Funct Mater 27(28):1701210

    Article  Google Scholar 

  11. Ongungal RM et al (2016) Self-assembly and mechanochromic luminescence switching of trifluoromethyl substituted 1,3,4-oxadiazole derivatives. J Mater Chem C 4(40):9588–9597

    Article  CAS  Google Scholar 

  12. Zhao K-Y et al (2016) Tuning emission of AIE-active organometallic Ir(III) complexes by simple modulation of strength of donor/acceptor on ancillary ligands. Organometallics 35(23):3996–4001

    Article  CAS  Google Scholar 

  13. Zhao Z et al (2016) The construction of a multicolored mechanochromic luminogen with high contrast through the combination of a large conjugation core and peripheral phenyl rings. J Mater Chem C 4(21):4800–4804

    Article  CAS  Google Scholar 

  14. Luo X et al (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265

    Article  CAS  Google Scholar 

  15. Dong Y et al (2012) Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew Chem Int Ed Engl 51(43):10782–10785

    Article  CAS  Google Scholar 

  16. Zhao Z et al (2017) Furan is superior to thiophene: a furan-cored AIEgen with remarkable chromism and OLED performance. Adv Sci 4(8):1700005

    Article  Google Scholar 

  17. Davis DA et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459(7243):68–72

    Article  CAS  Google Scholar 

  18. Wang C, Li Z (2017) Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater Chem Front 1:2174–2194

    Article  CAS  Google Scholar 

  19. Sagara Y, Kato T (2009) Mechanically induced luminescence changes in molecular assemblies. Nat Chem 1(8):605–610

    Article  CAS  Google Scholar 

  20. Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) 29:4332–4353

    Article  Google Scholar 

  21. Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388

    Article  CAS  Google Scholar 

  22. Mei J et al (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940

    Article  CAS  Google Scholar 

  23. Zhao N et al (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun (Camb) 48(69):8637–8639

    Article  CAS  Google Scholar 

  24. Zhao N et al (2013) A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J Mater Chem C 1(31):4640–4646

    Article  CAS  Google Scholar 

  25. Chowdhury A, Howlader P, Mukherjee PS (2016) Mechano-fluorochromic Pt-II luminogen and its cysteine recognition. Chem Eur J 22(4):1424–1434

    Article  CAS  Google Scholar 

  26. Shen XY et al (2013) Effects of substitution with donor–acceptor groups on the properties of tetraphenylethene trimer: aggregation-induced emission, solvatochromism, and mechanochromism. J Phys Chem C 117(14):7334–7347

    Article  CAS  Google Scholar 

  27. Zhang J et al (2013) Oligo(phenothiazine)s: twisted intramolecular charge transfer and aggregation-induced emission. J Phys Chem C 117(44):23117–23125

    Article  CAS  Google Scholar 

  28. Han J et al (2018) To direct the self-assembly of AIEgens by three-gear switch: morphology study, amine sensing and assessment of meat spoilage. Sensors Actuators B Chem 258:373–380

    Article  CAS  Google Scholar 

  29. Sasaki S, Drummen GPC, Konishi G-i (2016) Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J Mater Chem C 4:2731–2743

    Article  CAS  Google Scholar 

  30. Feng Q et al (2016) Multiple-color aggregation-induced emission (AIE) molecules as chemodosimeters for pH sensing. Chem Commun (Camb) 52(15):3123–3126

    Article  CAS  Google Scholar 

  31. Zhang JN et al (2017) Organic solid fluorophores regulated by subtle structure modification: color-tunable and aggregation-induced emission. Chem Sci 8(1):577–582

    Article  CAS  Google Scholar 

  32. Hu L et al (2017) An AIE luminogen as a multi-channel sensor for ethanol. Sensors Actuators B Chem 239:467–473

    Article  CAS  Google Scholar 

  33. Han T et al (2016) Solvent-assistant self-assembly of an AIE+TICT fluorescent Schiff base for the improved ammonia detection. Talanta 150:104–112

    Article  CAS  Google Scholar 

  34. Guido CA et al (2010) Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Phys Chem Chem Phys 12(28):8016–8023

    Article  CAS  Google Scholar 

  35. Guo ZH et al (2014) A donor-acceptor-donor conjugated molecule: twist intramolecular charge transfer and piezochromic luminescent properties. Chem Commun (Camb) 50(46):6088–6090

    Article  CAS  Google Scholar 

  36. Gundu S et al (2017) AIE-active and reversible mechanochromic tetraphenylethene-tetradiphenylacrylonitrile hybrid luminogens with re-writable optical data storage application. Dyes Pigments 146:7–13

    Article  CAS  Google Scholar 

  37. Hu Y et al (2018) Novel scorpion-like carbazole derivatives: synthesis, characterization, mechanochromism and aggregation-induced emission. Dyes Pigments 151:165–172

    Article  CAS  Google Scholar 

  38. Kwon MS et al (2012) Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad: mechanically controlled photo-induced electron transfer (eT) in molecular assemblies. Adv Mater 24(40):5487–5492

    Article  CAS  Google Scholar 

  39. Qi Q et al (2015) Remarkable turn-on and color-tuned piezochromic luminescence: mechanically switching intramolecular charge transfer in molecular crystals. Adv Funct Mater 25(26):4005–4010

    Article  CAS  Google Scholar 

  40. Han T et al (2013) Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. J Mater Chem C 1(44):7314

    Article  CAS  Google Scholar 

  41. Yuan WZ et al (2013) Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast. Adv Mater 25(20):2837–2843

    Article  CAS  Google Scholar 

  42. Wei J et al (2015) High-contrast and reversible mechanochromic luminescence of a D-pi-A compound with a twisted molecular conformation. RSC Adv 5(88):71903–71910

    Article  CAS  Google Scholar 

  43. Sun J et al (2016) Mechanochromic luminogen with aggregation-induced emission: implications for ink-free rewritable paper with high fatigue resistance and low toxicity. J Mater Chem C 4(35):8276–8283

    Article  CAS  Google Scholar 

  44. Sun J et al (2014) A donor-acceptor cruciform pi-system: high contrast mechanochromic properties and multicolour electrochromic behavior. J Mater Chem C 2(27):5365–5371

    Article  CAS  Google Scholar 

  45. Su X et al (2016) A high contrast tri-state fluorescent switch: properties and applications. Chem Asian J 11(22):3205–3212

    Article  CAS  Google Scholar 

  46. Chen W et al (2016) Dicyanomethylenated acridone based crystals: torsional vibration confinement induced emission with supramolecular structure dependent and stimuli responsive characteristics. J Phys Chem C 120(1):587–597

    Article  CAS  Google Scholar 

  47. Zhao H et al (2016) Remarkable substitution influence on the mechanochromism of cyanostilbene derivatives. RSC Adv 6(71):66477–66483

    Article  CAS  Google Scholar 

  48. Dong YQ et al (2007) Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chem Commun 1:40–42

    Article  Google Scholar 

  49. Gu X et al (2012) Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv Funct Mater 22(23):4862–4872

    Article  CAS  Google Scholar 

  50. Li C et al (2013) Switching the emission of di(4-ethoxyphenyl)dibenzofulvene among multiple colors in the solid state. SCIENCE CHINA Chem 56(9):1173–1177

    Article  Google Scholar 

  51. Shi J et al (2013) Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chin Sci Bull 58(22):2723–2727

    Article  CAS  Google Scholar 

  52. Davis JR et al (2015) Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161(2):361–373

    Article  CAS  Google Scholar 

  53. Liu Y et al (2015) Fluorescence turn-on folding sensor to monitor proteome stress in live cells. J Am Chem Soc 137(35):11303–11311

    Article  CAS  Google Scholar 

  54. Sun H et al (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601

    Article  Google Scholar 

  55. Xue S et al (2016) Alkyl length effects on solid-state fluorescence and mechanochromic behavior of small organic luminophores. J Mater Chem C 4(8):1568–1578

    Article  CAS  Google Scholar 

  56. Zhu X et al (2014) An AIE-active boron-difluoride complex: multi-stimuli-responsive fluorescence and application in data security protection. Chem Commun (Camb) 50(85):12951–12954

    Article  CAS  Google Scholar 

  57. Chi Z et al (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41(10):3878–3896

    Article  CAS  Google Scholar 

  58. Dong YQ, Lam JW, Tang BZ (2015) Mechanochromic luminescence of aggregation-induced emission luminogens. J Phys Chem Lett 6(17):3429–3436

    Article  CAS  Google Scholar 

  59. Shi PJ et al (2018) A turn-on type mechanochromic fluorescent material based on defect-induced emission: implication for pressure sensing and mechanical printing. J Mater Chem C 6(10):2476–2482

    Article  CAS  Google Scholar 

  60. Chung JW et al (2009) Shear- and UV-induced fluorescence switching in stilbenic pi-dimer crystals powered by reversible [2+2] cycloaddition. J Am Chem Soc 131(23):8163–8172

    Article  CAS  Google Scholar 

  61. Li H et al (2011) Aggregation-induced emission enhancement compounds containing triphenylamine-anthrylenevinylene and tetraphenylethene moieties. J Mater Chem 21(11):3760

    Article  CAS  Google Scholar 

  62. Li HY et al (2011) New thermally stable piezofluorochromic aggregation-induced emission compounds. Org Lett 13(4):556–559

    Article  Google Scholar 

  63. Gu XG et al (2015) Mitochondrion-specific live-cell bioprobe operated in a fluorescence turn-on manner and a well-designed photoactivatable mechanism. Adv Mater 27(44):7093–7100

    Article  CAS  Google Scholar 

  64. Mei X et al (2016) Carbazole-based diphenyl maleimides: multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and pH. Dyes Pigments 133:345–353

    Article  CAS  Google Scholar 

  65. Wu XX et al (2017) Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives. Cryst Growth Des 17(11):6041–6048

    Article  CAS  Google Scholar 

  66. Shustova NB, McCarthy BD, Dinca M (2011) Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133(50):20126–20129

    Article  CAS  Google Scholar 

  67. Shustova NB et al (2012) Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J Am Chem Soc 134(36):15061–15070

    Article  CAS  Google Scholar 

  68. Han B et al (2016) Constructing a nonfluorescent conformation of AIEgen: a tetraphenylethene embedded in the calix[4]arene’s skeleton. Chemistry 22(45):16037–16041

    Article  CAS  Google Scholar 

  69. Han TY et al (2015) A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. J Mater Chem C 3(28):7446–7454

    Article  CAS  Google Scholar 

  70. Galer P et al (2014) Crystal structures and emission properties of the BF2 complex 1-phenyl-3-(3,5-dimethoxyphenyl)-propane-1,3-dione: multiple chromisms, aggregation- or crystallization-induced emission, and the self-assembly effect. J Am Chem Soc 136(20):7383–7394

    Article  CAS  Google Scholar 

  71. Huang J et al (2012) Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs. J Mater Chem 22(24):12001–12007

    Article  CAS  Google Scholar 

  72. Zhan Y et al (2016) Carbazole-based salicylaldimine difluoroboron complex with crystallization-induced emission enhancement and reversible piezofluorochromism characteristics. Tetrahedron Lett 57(48):5385–5389

    Article  CAS  Google Scholar 

  73. Zheng X et al (2017) Mechanoresponsive fluorescence of 2-aminobenzophenone derivatives based on amorphous phase to crystalline transformation with high “off–on” contrast ratio. J Phys Chem C 121(39):21610–21615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, T., Dong, Y.Q. (2019). High Performance Mechanochromic Luminescent Materials from AIEgens. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_5

Download citation

Publish with us

Policies and ethics