Skip to main content

Utilisation of Tetraphenylethene-Derived Probes with Aggregation-Induced Emission Properties in Fluorescence Detection of Biothiols

  • Chapter
  • First Online:
Principles and Applications of Aggregation-Induced Emission
  • 1833 Accesses

Abstract

Thiol-containing biomolecules (biothiols), including cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulphide (H2S), have crucial implications in human physiology and pathophysiology. They can be qualitatively and quantitatively analysed in the tissues of interest using sensitive and specific fluorescent probes, which may in turn reflect alternations in cellular activities and disease manifestations. In this regard, probes with aggregation-induced emission (AIE) properties are preferential owing to their enhanced emission in the aqueous environment present in biological systems. In this chapter, we review the recent progress in biothiol-specific probes that are derived from the well-documented tetraphenylethene (TPE) scaffold. In particular, we highlight their underlying reaction mechanisms with the target biothiol(s) and their applications in cell imaging where available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueland PM et al (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 39:1764–1779

    CAS  Google Scholar 

  2. Brigham MP, Stein WH, Moore S (1960) The concentrations of cysteine and cystine in human blood plasma. J Clin Invest 39:1633–1638

    Article  CAS  Google Scholar 

  3. Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL (2018) Recent advances in nanomaterial probes for optical biothiol sensing: a review. Anal Lett 51:443–468

    Article  CAS  Google Scholar 

  4. Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229

    Article  CAS  Google Scholar 

  5. Suzuki K, Sagara M, Aoki C, Tanaka S, Aso Y (2017) Clinical implication of plasma hydrogen sulfide levels in Japanese patients with Type 2 diabetes. Intern Med 56:17–21

    Article  CAS  Google Scholar 

  6. Jiang J et al (2016) Hydrogen sulfide - mechanisms of toxicity and development of an antidote. Sci Rep 6:20831

    Article  CAS  Google Scholar 

  7. Maulik VT, Jennifer SL, Teruna JS (2009) The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 10:614–625

    Article  Google Scholar 

  8. Jensen KP, Ryde U (2003) Conversion of homocysteine to methionine by methionine synthase: a density functional study. J Am Chem Soc 125:13970–13971

    Article  CAS  Google Scholar 

  9. Medina MÁ, Urdiales JL, Amores-Sánchez MI (2001) Roles of homocysteine in cell metabolism. Eur J Biochem 268:3871–3882

    Article  CAS  Google Scholar 

  10. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  CAS  Google Scholar 

  11. Nakagawa I, Suzuki M, Yanagiya T, Imura N, Naganuma A (1995) Effect of glutathione depletion on metallothionein synthesis induced by paraquat in mice. Tohoku J Exp Med 177:249–262

    Article  CAS  Google Scholar 

  12. Moskaug JØ, Carlsen H, Myhrstad MC, Blomhoff R (2005) Polyphenols and glutathione synthesis regulation. Am J Clin Nutr 81:277S–283S

    Article  CAS  Google Scholar 

  13. Li L, Moore PK (2007) An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 35:1138–1141

    Article  CAS  Google Scholar 

  14. Bhatia M (2015) In: Moore PK, Whiteman M (eds) Chemistry, biochemistry and pharmacology of hydrogen sulfide. Springer, Berlin, pp 165–180

    Chapter  Google Scholar 

  15. Papapetropoulos A et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci 106:21972–21977

    Article  CAS  Google Scholar 

  16. Bhatia M (2005) Hydrogen sulfide as a vasodilator. IUBMB Life 57:603–606

    Article  CAS  Google Scholar 

  17. Kimura Y, Goto Y-I, Kimura Y-I (2009) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria Antioxid. Redox Signal 12:1–13

    Google Scholar 

  18. Whiteman M et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    Article  CAS  Google Scholar 

  19. Lieberman MW et al (1996) Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A 93:7923–7926

    Article  CAS  Google Scholar 

  20. Alena F, Dixon W, Thomas P, Jimbow K (1995) Glutathione plays a key role in the depigmenting and melanocytotoxic action of N-acetyl-4-S-cysteaminylphenol in black and yellow hair follicles. J Invest Dermatol 104:792–797

    Article  CAS  Google Scholar 

  21. Khoshbaten M et al (2010) N-Acetylcysteine improves liver function in patients with non-alcoholic fatty liver disease. Hepat Mon 10:12–16

    Google Scholar 

  22. Nakai K et al (2015) Effects of topical N-acetylcysteine on skin hydration/transepidermal water loss in healthy volunteers and atopic dermatitis patients. Ann Dermatol 27:450–451

    Article  CAS  Google Scholar 

  23. Zhang SM et al (2003) A prospective study of plasma total cysteine and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12:1188–1193

    CAS  Google Scholar 

  24. Bostom AG, Culleton BF (1999) Hyperhomocysteinemia in chronic renal disease. J Am Soc Nephrol 10:891–900

    CAS  Google Scholar 

  25. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6

    Article  Google Scholar 

  26. Sachdev P (2004) Homocisteína e transtornos psiquiátricos. Rev Bras Psiquiatr 26:50–56

    Article  Google Scholar 

  27. Uys JD, Mulholland PJ, Townsend DM (2014) Glutathione and redox signaling in substance abuse. Biomed Pharmacother 68:799–807

    Article  CAS  Google Scholar 

  28. Prussick R, Prussick L, Gutman J (2013) Psoriasis improvement in patients using glutathione-enhancing, nondenatured whey protein isolate: a pilot study. J Clin Aesthet Dermatol 6:23–26

    Google Scholar 

  29. Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    Article  CAS  Google Scholar 

  30. Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22:343–352

    Article  CAS  Google Scholar 

  31. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300

    Article  CAS  Google Scholar 

  32. Eto K, Kimura H (2002) The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-l-methionine in mouse brain. J Neurochem 83:80–86

    Article  CAS  Google Scholar 

  33. Cao X, Cao L, Ding L, Bian J-S (2018) A new hope for a devastating disease: hydrogen sulfide in Parkinson’s disease. Mol Neurobiol 55:3789–3799

    Google Scholar 

  34. Zhang L-M, Jiang C-X, Liu D-W (2009) Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res 34:1984–1992

    Article  CAS  Google Scholar 

  35. Yin C-X, Xiong K-M, Huo F-J, Salamanca JC, Strongin RM (2017) Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH. Angew Chem Int Ed 56:13188–13198

    Article  CAS  Google Scholar 

  36. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135. https://doi.org/10.1039/B925092A

    Article  CAS  Google Scholar 

  37. de Silva AP et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  38. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  Google Scholar 

  39. Kim SA, Schwille P (2003) Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr Opin Neurobiol 13:583–590

    Article  CAS  Google Scholar 

  40. Zhang H, Zhang C, Liu R, Yi L, Sun H (2015) A highly selective and sensitive fluorescent thiol probe through dual-reactive and dual-quenching groups. Chem Commun 51:2029–2032

    Article  CAS  Google Scholar 

  41. Rusin O et al (2004) Visual detection of cysteine and homocysteine. J Am Chem Soc 126:438–439

    Article  CAS  Google Scholar 

  42. Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T (2007) A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer: key role of ortho substitution. Org Lett 9:3375–3377

    Article  CAS  Google Scholar 

  43. Wang S-P et al (2009) A colorimetric and fluorescent merocyanine-based probe for biological thiols. Org Biomol Chem 7:4017–4020

    Article  CAS  Google Scholar 

  44. Luo J et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 0:1740–1741. https://pubs.rsc.org/en/content/articlelanding/2001/cc/b105159h#!divAbstract

  45. Tang BZ et al (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978

    Article  CAS  Google Scholar 

  46. Liu M et al (2017) 9-Vinylanthracene based fluorogens: synthesis, structure-property relationships and applications. Molecules 22:2148

    Article  Google Scholar 

  47. Dong Y et al (2012) Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10-distyrylanthracene. CrstEngComm 14:6593–6598

    Article  CAS  Google Scholar 

  48. Peng L et al (2014) A fluorescent probe for thiols based on aggregation-induced emission and its application in live-cell imaging. Dyes Pigm 108:24–31

    Article  CAS  Google Scholar 

  49. Chen S et al (2013) Full-range intracellular pH sensing by an aggregation-induced emission-active two-channel ratiometric fluorogen. J Am Chem Soc 135:4926–4929

    Article  CAS  Google Scholar 

  50. Chen M et al (2015) Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem Sci 6:1932–1937

    Article  CAS  Google Scholar 

  51. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    Article  CAS  Google Scholar 

  52. Leung CWT et al (2014) Superior fluorescent probe for detection of cardiolipin. Anal Chem 86:1263–1268

    Article  CAS  Google Scholar 

  53. Huang Y et al (2014) Tetraphenylethylene conjugated with a specific peptide as a fluorescence turn-on bioprobe for the highly specific detection and tracing of tumor markers in live cancer cells. Chem A Eur J 20:158–164

    Article  CAS  Google Scholar 

  54. Hong Y, Chen S, Leung CWT, Lam JWY, Tang BZ (2013) Water-soluble tetraphenylethene derivatives as fluorescent “light-up” probes for nucleic acid detection and their applications in cell imaging. Chem Asian J 8:1806–1812

    Article  CAS  Google Scholar 

  55. Michael A (1887) On the addition of sodium acetacetic ether and analogous sodium compounds to unsaturated organic ethers. Am Chem J 9:115

    Google Scholar 

  56. Vernon B, Tirelli N, Bächi T, Haldimann D, Hubbell JA (2003) Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J Biomed Mater Res A 64A:447–456

    Article  CAS  Google Scholar 

  57. Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  58. Li X et al (2012) Simple fluorescent probe derived from tetraphenylethylene and benzoquinone for instantaneous biothiol detection. Anal Methods 4:3338–3443

    Article  CAS  Google Scholar 

  59. Zhang R et al (2014) Fluorogen-peptide conjugates with tunable aggregation-induced emission characteristics for bioprobe design. ACS Appl Mater Interfaces 6:14302–14310

    Article  CAS  Google Scholar 

  60. Yuan Y et al (2014) Rational design of fluorescent light-up probes based on an AIE luminogen for targeted intracellular thiol imaging. Chem Commun 50:295–297

    Article  CAS  Google Scholar 

  61. Yu Y et al (2013) Thiol-reactive molecule with dual-emission-enhancement property for specific prestaining of cysteine containing proteins in SDS-PAGE. ACS Appl Mater Interfaces 5:4613–4616

    Article  CAS  Google Scholar 

  62. Liu Y et al (2010) Simple biosensor with high selectivity and sensitivity: thiol-specific biomolecular probing and intracellular imaging by AIE fluorogen on a TLC plate through a thiol–ene click mechanism. Chem A Eur J 16:8433–8438

    Article  CAS  Google Scholar 

  63. Chen MZ et al (2017) A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat Commun 8:474

    Article  Google Scholar 

  64. Lou X et al (2014) A selective glutathione probe based on AIE fluorogen and its application in enzymatic activity assay. Sci Rep 4:4272

    Article  Google Scholar 

  65. Zhao N et al (2015) A fluorescent probe with aggregation-induced emission characteristics for distinguishing homocysteine over cysteine and glutathione. J Mater Chem C 3:8397–8402

    Article  CAS  Google Scholar 

  66. Chen S et al (2014) Discrimination of homocysteine, cysteine and glutathione using an aggregation-induced-emission-active hemicyanine dye. J Mater Chem B 2:3919–3923

    Article  CAS  Google Scholar 

  67. Lou X et al (2014) A new turn-on chemosensor for bio-thiols based on the nanoaggregates of a tetraphenylethene-coumarin fluorophore. Nanoscale 6:14691–14696

    Article  CAS  Google Scholar 

  68. Cai Y et al (2014) A sensitivity tuneable tetraphenylethene-based fluorescent probe for directly indicating the concentration of hydrogen sulfide. Chem Commun 50:8892–8895

    Article  CAS  Google Scholar 

  69. Zhang W, Kang J, Li P, Wang H, Tang B (2015) Dual signaling molecule sensor for rapid detection of hydrogen sulfide based on modified tetraphenylethylene. Anal Chem 87:8964–8969

    Article  CAS  Google Scholar 

  70. Zhang Y et al (2016) Organic nanoparticles formed by aggregation-induced fluorescent molecules for detection of hydrogen sulfide in living cells. Sci China Chem 59:106–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Hong, Y. (2019). Utilisation of Tetraphenylethene-Derived Probes with Aggregation-Induced Emission Properties in Fluorescence Detection of Biothiols. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_16

Download citation

Publish with us

Policies and ethics