Skip to main content

Aggregation-Induced Emission (AIE): A Versatile Tool for Chemo/Biosensing

  • Chapter
  • First Online:
Principles and Applications of Aggregation-Induced Emission

Abstract

AIE as a photo-physical phenomenon is growing at an exponential rate which provides unique opportunities in different scientific domains. Inspired from fascinating properties of AIE-based conventional frameworks like tetraphenylethylene (TPE), hexaphenylsilole (HPS), new motifs, and their aggregation properties have been rationalized rapidly. In this chapter, the current aspects of AIE-based self-assembled probes using novel frameworks like hexaphenylbenzene (HPB), hexaarylbenzene (HAB), pentacenequinone, pyrazine, and terphenyl are documented. Further, the applications of these probes in chemo/biosensing are presented with emphasis on our current reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epple R, Forster TZ (1954). Electrochem Angew Phys Chem 58:783–787

    CAS  Google Scholar 

  2. Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London

    Google Scholar 

  3. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001). Chem Commun (Camb) 0:1740–1741

    Google Scholar 

  4. An BK, Kwon SK, Jung SD, Park SY (2002). J Am Chem Soc 124(48):14410–14415

    CAS  Google Scholar 

  5. de Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997). Chem Rev 97:1515–1566

    Google Scholar 

  6. Callan JF, de Silva AP, Magri DC (2005). Tetrahedron 61(36):8551–8588

    CAS  Google Scholar 

  7. Xu ZC, Yoon J, Spring DR (2010). Chem Soc Rev 39:1996

    CAS  Google Scholar 

  8. Zhao Q, Li F, Huang C (2010). Chem Soc Rev 39:3007–3030

    CAS  Google Scholar 

  9. Rettig W, Lapouyade R (1994) Topics in fluorescence spectroscopy. In: Lakowicz JR (ed) Probe design and chemical sensing, vol 4. Plenum Press, New York, p 109

    Google Scholar 

  10. Sapsford KE, Berti L, Medintz IL (2006). Angew Chem Int Ed Engl 45(28):4562–4589

    CAS  Google Scholar 

  11. Lodeiro C, Pina F (2009). Coord Chem Rev 253:1353–1383

    CAS  Google Scholar 

  12. Bolton O, Lee K, Kim HJ, Lin KY, Kim J (2011). Nat Chem 3(5):205–210

    CAS  Google Scholar 

  13. Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007). J Phys Chem B 111:5861–5868

    CAS  Google Scholar 

  14. Zhang Y, Wang JH, Zheng WJ, Chen TF, Tong QX, Li D (2014). J Mater Chem B 2:4159–4166

    CAS  Google Scholar 

  15. Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ (2003). Chem Mater 15(7):1535–1546

    CAS  Google Scholar 

  16. Hong Y, Lama JWY, Tang BZ (2009). Chem Commun 0:4332–4353

    Google Scholar 

  17. Hong Y, Lam JWY, Tang BZ (2011). Chem Soc Rev 40:5361–5388

    CAS  Google Scholar 

  18. Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015). Chem Soc Rev 44:4228–4238

    CAS  Google Scholar 

  19. Mei J, NLC L, RTK K, JWY L, Tang BZ (2015). Chem Rev 115:11718–11940

    CAS  Google Scholar 

  20. Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore JS, Zhang L (2007). J Am Chem Soc 129:6978–6979

    CAS  Google Scholar 

  21. Zang L, Che Y, Moore JS (2008). Acc Chem Res 41:1596–1608

    CAS  Google Scholar 

  22. Zyryanov GV, Palacios MA, Anzenbacher P (2008). Org Lett 10:3681–3684

    CAS  Google Scholar 

  23. Whitney EN, Rolfes SR (2015) Understanding nutrition14th edn. Wadsworth, Cengage Learning, Belmont

    Google Scholar 

  24. Griffiths AJF, Gelbart WM, Miller JH, Lewontin RC (1999) Modern genetic analysis. W. H. Freeman, New York.

    Google Scholar 

  25. Yao J, Yang M, Duan Y (2014). Chem Rev 114:6130–6178

    CAS  Google Scholar 

  26. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, New York

    Google Scholar 

  27. Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X (2011). Angew Chem Int Ed 50(28):6306–6310

    CAS  Google Scholar 

  28. Wu J, Liu W, Ge J, Zhang H, Wang P (2011). Chem Soc Rev 40:3483–3495

    CAS  Google Scholar 

  29. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010). Angew Chem Int Ed 49:5708–5711

    CAS  Google Scholar 

  30. Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011). Angew Chem Int Ed 50:401–404

    CAS  Google Scholar 

  31. Domaille DW, Que EL, Chang CJ (2008). Nat Chem Biol 4:168–175

    CAS  Google Scholar 

  32. Lim MH, Lippard SJ (2007). Acc Chem Res 40:41–51

    CAS  Google Scholar 

  33. Jares-Erijman EA, Jovin TM (2003). Nat Biotechnol 21:1387–1395

    CAS  Google Scholar 

  34. Hang Y, Yang L, Qu Y, Hua J (2014). Tetrahedron Lett 55(51):6998–7001

    CAS  Google Scholar 

  35. Li W, Chen D, Wang H, Luo S, Dong L, Zhang Y, Shi J, Tong B, Dong Y (2015). ACS Appl Mater Interfaces 7:26094–26100

    CAS  Google Scholar 

  36. Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X (2013). Polym Chem 4:4045–4051

    CAS  Google Scholar 

  37. Chang Y, Jin L, Duan J, Zhang Q, Wang J, Lu Y (2015). RSC Adv 5:103358–103364

    CAS  Google Scholar 

  38. Zhu Z, Xu L, Li H, Zhou X, Qin J, Yang C (2014). Chem Commun 50:7060–7062

    CAS  Google Scholar 

  39. Samanta S, Goswami S, Hoque MN, Ramesh A, Das G (2014). Chem Commun 50:11833–11836

    CAS  Google Scholar 

  40. Mei J, Wang Y, Tong J, Wang J, Qin A, Sun JZ, Tang BZ (2013). Chem A Eur J 19:613

    CAS  Google Scholar 

  41. Nakamura M, Sanji T, Tanaka M (2011). Chem A Eur J 17:5344–5349

    CAS  Google Scholar 

  42. Chopra S, Singh A, Venugopalan P, Singh N, Kaur N (2017). ACS Sustain Chem Eng 5:1287–1296

    CAS  Google Scholar 

  43. Huang YJ, Ouyang W-J, Wu X, Li Z, Fossey JS, James TD, Jiang Y-B (2013). J Am Chem Soc 135:1700–1703

    CAS  Google Scholar 

  44. Wang X, Huang Y, Lv W, Li C, Zeng W, Zhang Y, Feng X (2017). Anal Methods 9:1872–1875

    CAS  Google Scholar 

  45. Kwok RTK, Geng J, Lam JWY, Zhao E, Wang G, Zhan R, Liu B, Tang BZ (2014). J Mater Chem B 2:4134–4141

    CAS  Google Scholar 

  46. Gu X, Zhang G, Zhang D (2012). Analyst 137:365–369

    CAS  Google Scholar 

  47. Tong H, Hong Y, Dong Y, Haeussler M, Li Z, Lam JWY, Dong Y, Sung HHY, Williams ID, Tang BZ (2007). J Phys Chem B 111:11817–11823

    CAS  Google Scholar 

  48. Bhalla V, Vij V, Dhir A, Kumar M (2012). Chem A Eur J 18:3765–3772

    CAS  Google Scholar 

  49. Davis JJ, Morgan DA, Wrathmell CL, Axford DN, Zhao J, Wang N (2005). J Mater Chem 15:2160–2174

    CAS  Google Scholar 

  50. Stegink LD (1987). Am J Clin Nutr 46:204–215

    CAS  Google Scholar 

  51. Leuchtenberger W, Huthmacher K, Drauz K (2005). Appl Microbiol Biotechnol 69(1):1–8

    CAS  Google Scholar 

  52. Peng H, Chen W, Cheng Y, Hakuna L, Strongin R, Wang B (2012). Sensors 12(11):15907–15946

    CAS  Google Scholar 

  53. Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsinic IK, Aggarwal BB (2011). Nat Prod Rep 28:1937–1955

    CAS  Google Scholar 

  54. Nigam V, Acharya A, Paarekh PM, Garg G (2012). Int J Pharmacol Ther 2:2249

    Google Scholar 

  55. Lee A, Patterson V (1993). Acta Neurol Scand 88(5):334–338

    CAS  Google Scholar 

  56. Kaur S, Bhalla V, Kumar M (2014). Chem Commun 50:9725–9728

    CAS  Google Scholar 

  57. Cohen SS (1998) A guide to polyamines. Oxford University Press, Oxford

    Google Scholar 

  58. Tabor CW, Tabor H (1984). Annu Rev Biochem 53:749–790

    CAS  Google Scholar 

  59. Cipolla BG, Ziade J, Bansard JY, Moulinoux JP, Staerman F, Quemener V, Lobel B, Guille F (1996). Cancer 78:1055–1065

    CAS  Google Scholar 

  60. Tejpal R, Kumar M, Bhalla V (2018). Sens Actuators B 258:841–849

    CAS  Google Scholar 

  61. Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  62. Vineis P, Pirastu R (1997) Cancer Causes Control 8:346–355

    Google Scholar 

  63. Gao M, Li S, Lin Y, Geng Y, Ling X, Wang L, Qin A, Tang BZ (2016) ACS Sens 1(2):179–184

    Google Scholar 

  64. Pramanik S, Deol H, Bhalla V, Kumar M (2018). ACS Appl Mater Interfaces 10(15):12112–12123

    CAS  Google Scholar 

  65. Baskar R, Bian J (2011). Eur J Pharmacol 656:5–9

    CAS  Google Scholar 

  66. Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, Zeng F, Chen P, Wang C (2011). PLoS One 6:21971

    Google Scholar 

  67. Pramanik S, Bhalla V, Kim HM, Singh H, Leeb HW, Kumar M (2015). Chem Commun 51:15570–15573

    CAS  Google Scholar 

  68. Thomas SW, Joly GD, Swager TM (2007). Chem Rev 107:1339–1386

    CAS  Google Scholar 

  69. Yang J-S, Swager TM (1998). J Am Chem Soc 120:11864–11873

    CAS  Google Scholar 

  70. Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010). Angew Chem Int Ed 49:6830–6835

    CAS  Google Scholar 

  71. Germain ME, Knapp MJ (2009). Chem Soc Rev 38:2543–2555

    CAS  Google Scholar 

  72. Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRS press, Boca Raton

    Google Scholar 

  73. Fainberg A (1992). Science 255:1531–1537

    CAS  Google Scholar 

  74. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000). Chem Rev 100:2595–2626

    CAS  Google Scholar 

  75. Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011). ACS Nano 5:2824–2830

    CAS  Google Scholar 

  76. Holdsworth G, Johnson MS (2005) USACHPPM, 37-EJ1138-01J: 1–14

    Google Scholar 

  77. Woodfin RL (2007) Trace chemical sensing of explosives. Wiley, Chichester

    Google Scholar 

  78. Narayanan A, Varnavski OP, Swager TM, Goodson T (2008). J Phys Chem C 112(4):881–884

    CAS  Google Scholar 

  79. Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012). J Am Chem Soc 134(10):4834–4841

    CAS  Google Scholar 

  80. Ding D, Li K, Liu B, Tang BZ (2013). Acc Chem Res 46(11):2441–2453

    CAS  Google Scholar 

  81. Toal SJ, Magde D, Trogler WC (2005). Chem Commun 0:5465–5467

    Google Scholar 

  82. Bhalla V, Gupta A, Kumar M (2012). Org Lett 14:3112–3115

    CAS  Google Scholar 

  83. Kumar M, Vij V, Bhalla V (2012). Langmuir 28:12417–12421

    CAS  Google Scholar 

  84. Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y (2013). Chem Commun 49:4764–4766

    CAS  Google Scholar 

  85. Sanchez JC, Trogler WC (2008). J Mater Chem 18:3143

    CAS  Google Scholar 

  86. Kaur S, Bhalla V, Vij V, Kumar M (2014). J Mater Chem C 2:3936–3941

    CAS  Google Scholar 

  87. Wu J, Baumgarten M, Debije MG, Warman JM, Mullen K (2004). Angew Chem Int Ed 43:5331–5335

    CAS  Google Scholar 

  88. Zhi L, Mullen K (2008). J Mater Chem 18:1472–1484

    CAS  Google Scholar 

  89. Feng X, Pisula W, Takase M, Dou X, Enkelmann V, Wagner M, Ding N, Mullen K (2008). Chem Mater 20:2872–2874

    CAS  Google Scholar 

  90. Vij V, Bhalla V, Kumar M (2013). ACS Appl Mater Interfaces 5:5373–5380

    CAS  Google Scholar 

  91. Bhalla V, Arora H, Singh H, Kumar M (2013). Dalton Trans 42:969–974

    CAS  Google Scholar 

  92. Bhalla V, Singh H, Kumar M, Prasad SK (2011). Langmuir 27:15275–15281

    CAS  Google Scholar 

  93. Germain ME, Knapp MJ (2008). J Am Chem Soc 130(16):5422–5423

    CAS  Google Scholar 

  94. Germain ME, Khalifah PG, Vargo TR, Knapp MJ (2007). Inorg Chem 46(11):4422–4429

    CAS  Google Scholar 

  95. Bhalla V, Kaur S, Vij V, Kumar M (2013). Inorg Chem 52:4860–4865

    CAS  Google Scholar 

  96. Philip AG (2010). Chem Soc Rev 39:3746–3771

    Google Scholar 

  97. Gale PA (2001). Coord Chem Rev 213:79

    CAS  Google Scholar 

  98. Anseeuw K, Delvau N, Burillo-Putze G, De Iaco F, Geldner G, Holmström P, Lambert Y, Sabbe M (2013). Eur J Emerg Med 20(1):2–9

    Google Scholar 

  99. (1996) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  100. Bhalla V, Pramanik S, Kumar M (2013). Chem Commun 49:895–888

    CAS  Google Scholar 

  101. Pramanik S, Bhalla V, Kumar M (2014). ACS Appl Mater Interfaces 6:5930–5939

    CAS  Google Scholar 

  102. Terkeltaub RA (2001). Am J Physiol Cell Physiol 281:1–11

    Google Scholar 

  103. Kim IB, Han MH, Phillips RL, Samanta B, Rotello VM, Zhang J, Bunz UHF (2009). Chem A Eur J 15:449–456

    CAS  Google Scholar 

  104. Park C, Hong JI (2010). Tetrahedron Lett 51:1960–1962

    CAS  Google Scholar 

  105. Pramanik S, Bhalla V, Kumar M (2017). New J Chem 41:4806–4813

    CAS  Google Scholar 

  106. Fawell J (2016) Fluoride in drinking-water. World Health Organisation, Geneva

    Google Scholar 

  107. Aoba T, Fejerskov O (2002). Crit Rev Oral Biol Med 13(2):155–170

    CAS  Google Scholar 

  108. Everett ET (2011). J Dent Res 90:552–560

    CAS  Google Scholar 

  109. Horowitz HS (2003). J Public Health Dent 63:3–8

    Google Scholar 

  110. Xu Z, Kim SK, Yoon J (2010). Chem Soc Rev 39:1457

    Google Scholar 

  111. Li AF, Wang JH, Wang F, Jiang YB (2010). Chem Soc Rev 39:3729

    CAS  Google Scholar 

  112. Duke RM, Veale EB, Pfeffer FM, Krugerc PE, Gunnlaugsson T (2010). Chem Soc Rev 39:3936

    CAS  Google Scholar 

  113. Skotheim TA, Elsenbaumer RL, Reynolds J (eds) (1997) Handbook of conducting polymers2nd edn. Marcel Dekker, New York

    Google Scholar 

  114. McQuade DT, Pullen AE, Swager TM (2000). Chem Rev 100:2537

    CAS  Google Scholar 

  115. Deol H, Bhalla V, Kumar M (2018). Sens Actuators B 258:682–693

    CAS  Google Scholar 

  116. Kaim W, Schwederski B (1991) Bioinorganic chemistry: inorganic elements in chemistry of life, an introduction and guide. Wiley Interscience, New York

    Google Scholar 

  117. Barcelo J, Poschenrieder C (2002). Environ Exp Bot 48:75–92

    CAS  Google Scholar 

  118. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007). J Toxicol Environ Health B 10:1–269

    CAS  Google Scholar 

  119. Gupta N, Kaur N, Bhalla V, Parihar RD, Ohri P, Kaur G, Kumar M (2017). Chem Commun 53:12646–12649

    CAS  Google Scholar 

  120. Steinwall O, Olsson Y (1969). Acta Neurol Scand 45:351–361

    CAS  Google Scholar 

  121. Nolan EM, Lippard SJ (2003). J Am Chem Soc 125:14270–14271

    CAS  Google Scholar 

  122. Kumar M, Dhir A, Bhalla V, Sharma R, Puri RK, Mahajan RK (2010). Analyst 135:1600–1605

    CAS  Google Scholar 

  123. Bhalla V, Tejpal R, Kumar M (2010). Sens Actuators B 151:180–185

    CAS  Google Scholar 

  124. Bhalla V, Vij V, Tejpal R, Singh G, Kumar M (2013). Dalton Trans 42:4456–4463

    CAS  Google Scholar 

  125. Singh G, Reja SI, Bhalla V, Kaur D, Kaur P, Arora S, Kumar M (2017). Sens Actuators B 249:311–320

    CAS  Google Scholar 

  126. Kaur S, Kumar M, Bhalla V (2015). Chem Commun 51:4085–4088

    CAS  Google Scholar 

  127. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009). Toxicol Lett 190(2):156–162

    CAS  Google Scholar 

  128. Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong MJ (2013). Mater Chem B 1:2719–2723

    CAS  Google Scholar 

  129. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000). J Biomed Mater Res 52:662–668

    CAS  Google Scholar 

  130. Pramanik S, Bhalla V, Kumar M (2015). ACS Appl Mater Interfaces 7(41):22786–22795

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tejpal, R., Bhalla, V., Kumar, M. (2019). Aggregation-Induced Emission (AIE): A Versatile Tool for Chemo/Biosensing. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_15

Download citation

Publish with us

Policies and ethics