Skip to main content

Nanocrystals with Crystallization-Induced or Enhanced Emission

  • Chapter
  • First Online:
Book cover Principles and Applications of Aggregation-Induced Emission

Abstract

In recent years, nanocrystals have attracted great research interest in a wide range of applications, such as electronics, bioimaging, and pharmaceuticals, thanks to the superior optical properties as compared to their amorphous counterparts. In this chapter, the principles of nanocrystallization methods, including top-down and bottom-up approaches, are elaborated for the synthesis of organic crystals. We specifically discuss how to use nanocrystals to improve the properties of organic fluorophores with aggregation-induced emission and crystallization-induced room temperature phosphorescence for bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  2. Feng G, Kwok RTK, Tang BZ, Liu B (2017) Functionality and versatility of aggregation-induced emission luminogens. Appl Phys Rev 4:021307

    Article  Google Scholar 

  3. Mei J, Leung NLC, Kowk RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    Article  CAS  Google Scholar 

  4. Forster T, Kasper K (1954) Ein Konzentrationsumschlag der Fluoreszenz. Z Phys Chem 1:275–277 (In German).

    Article  Google Scholar 

  5. Zhelev Z, Ohba H, Bakalova R (2006) Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc 128:6324–6325

    Article  CAS  Google Scholar 

  6. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  Google Scholar 

  7. Saigusa H, Lim EC (1995) Excited-state dynamics of aromatic clusters: correlation between exciton interactions and excimer formation dynamics. J Phys Chem 99:15738–15747

    Article  CAS  Google Scholar 

  8. Wu W, Tang R, Li Q, Li Z (2015) Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem Soc Rev 44:3997–4022

    Article  CAS  Google Scholar 

  9. Wu W, Ye S, Tang R, Huang L, Li Q, Yu G, Liu Y, Qin J, Li Z (2012) New tetraphenylethylene-containing conjugated polymers: facile synthesis, aggregation-induced emission enhanced characteristics and application as explosive chemsensors and PLEDs. Polymer 53:3163–3171

    Article  CAS  Google Scholar 

  10. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (18):1740–1741

    Google Scholar 

  11. Tang BZ, Zhan X, Yu G, Sze Lee PP, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978

    Article  CAS  Google Scholar 

  12. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479

    Article  CAS  Google Scholar 

  13. Im SH, Lim YT, Suh DJ, Park OO (2002) Three-dimensional self-assembly of colloids at a water-air interface: a novel technique for the fabrication of photonic band gap crystals. Adv Mater 14:1367–1369

    Article  CAS  Google Scholar 

  14. Yao Z-F, Wang J-Y, Pei J (2018) Control of π-π stacking via crystal engineering in organic conjugated small molecule crystals. Cryst Growth Des 18(1):7–15. https://doi.org/10.1021/acs.cgd.7b01385

    Article  CAS  Google Scholar 

  15. Müller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9

    Article  Google Scholar 

  16. Zhao Z, Chen T, Jiang S, Liu Z, Fang D, Dong Y (2016) The construction of a multicolored mechanochromic luminogen with high contrast through the combination of a large conjugation core and peripheral phenyl rings. J Mater Chem C 4:4800–4804

    Article  CAS  Google Scholar 

  17. Fateminia SMA, Wang Z, Liu B (2017) Nanocrystallization: an effective approach to enhance the performance of organic molecules. Small Methods 1:160002

    Article  Google Scholar 

  18. Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Size dependence of exciton fine structure in CdSe quantum dots. Phys Rev B 53:16347–16354

    Article  CAS  Google Scholar 

  19. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  CAS  Google Scholar 

  20. Wang GD, Mallet FP, Ricard F, Heng JY (2012) Pharmaceutical nanocrystals. Curr Opin Chem Eng 1:102–107

    Article  CAS  Google Scholar 

  21. Messing GL, Zhang SC, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76:2707–2726

    Article  CAS  Google Scholar 

  22. Yu T, Joo J, Park YI, Hyeon T (2005) Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew Chem 117:7577–7580

    Article  Google Scholar 

  23. Fery-Forgues S (2013) Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. Nanoscale 5:8428–8442

    Article  CAS  Google Scholar 

  24. Rasenack N, Müller BW (2004) Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol 9:1–13

    Article  CAS  Google Scholar 

  25. Loh ZH, Samanta AK, Heng PWS (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 10:255–274

    Article  Google Scholar 

  26. Tozuka Y, Imono M, Uchiyama H, Takeuchi H (2011) A novel application of α-glucosyl hesperidin for nanoparticle formation of active pharmaceutical ingredients by dry grinding. Eur J Pharm Biopharm 79:559–565

    Article  CAS  Google Scholar 

  27. Hou T-H, Su C-H, Liu W-L (2007) Parameters optimization of a nanoparticle wet milling process using the taguchi method, response surface method and genetic algorithm. Powder Technol 173:153–162

    Article  CAS  Google Scholar 

  28. Charkhi A, Kazemian H, Kazemeini M (2010) Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technol 203:389–396

    Article  CAS  Google Scholar 

  29. Wang Y, Forssberg E (2006) Production of carbonate and silica nano-particles in stirred bead milling. Int J Miner Process 81:1–14

    Article  CAS  Google Scholar 

  30. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16

    Article  CAS  Google Scholar 

  31. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Article  CAS  Google Scholar 

  32. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Article  CAS  Google Scholar 

  33. Kipp J (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122

    Article  CAS  Google Scholar 

  34. Chung H-R, Kwon E, Oikawa H, Kasai H, Nakanishi H (2006) Effect of solvent on organic nanocrystal growth using the reprecipitation method. J Cryst Growth 294:459–463

    Article  CAS  Google Scholar 

  35. De Waard H, Hinrichs W, Frijlink H (2008) A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release 128:179–183

    Article  Google Scholar 

  36. Fateminia SMA, Wang Z, Goh CC, Manghnani PN, Wu W, Mao D, Ng LG, Zhao Z, Tang BZ, Liu B (2017) Nanocrystallization: a unique approach to yield bright organic nanocrystals for biological applications. Adv Mater 29:1604100

    Article  Google Scholar 

  37. Fateminia SMA, Mao Z, Xu S, Yang Z, Chi Z, Liu B (2017) Organic Nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew Chem Int Ed 56:12160–12164

    Article  CAS  Google Scholar 

  38. Dong Y, Lam JWY, Li Z, Qin A, Tong H, Dong Y, Feng X, Tang BZ (2005) Vapochromism of hexaphenylsilole. J Inorg Organomet Polym Mater 15:287–291

    Article  CAS  Google Scholar 

  39. Dong Y, Lam JWY, Qin A, Li Z, Sun J, Dong Y, Tang BZ (2007) Vapochromism and crystallization-enhanced emission of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. J Inorg Organomet Polym Mater 17:673–678

    Article  CAS  Google Scholar 

  40. Dong Y, Lam JWY, Qin A, Sun J, Liu J, Li Z, Sun J, Sung HHY, Williams ID, Kwok HS, Tang BZ (2007) Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem Commun (31):3255–3257

    Google Scholar 

  41. Gu X, Yao J, Zhang G, Yan Y, Zhang C, Peng Q, Liao Q, Wu Y, Xu Z, Zhao Y, Hu H, Zhang D (2012) Polymorphism-dependent emission for Di(p-methoxylphenyl)dibenzofulvene and analogues: optical waveguide/amplified spontaneous emission behaviors. Adv Funct Mater 22:4862–4872

    Article  CAS  Google Scholar 

  42. Hsiao T-S, Deng S-L, Shih K-Y, Hong J-L (2014) Crystallization-enhanced emission through hydrogen-bond interactions in blends containing hydroxyl-functionalized azine and poly (4-vinyl pyridine). J Mater Chem C 2:4828–4834

    Article  CAS  Google Scholar 

  43. Yoshii R, Hirose A, Tanaka K, Chujo Y (2014) Boron diiminate with aggregation-induced emission and crystallization-induced emission-enhancement characteristics. Chem Eur J 20:8320–8324

    Article  CAS  Google Scholar 

  44. Shi J, Zhao W, Li C, Liu Z, Bo Z, Dong Y, Dong Y, Tang BZ (2013) Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chin Sci Bull 58:2723–2727

    Article  CAS  Google Scholar 

  45. Yoon SJ, Chung JW, Gierschner J, Kim KS, Choi MG, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683

    Article  CAS  Google Scholar 

  46. Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J (2011) Piezofluorochromic properties and mechanism of an aggregation-induced emission enhancement compound containing N-hexyl-phenothiazine and anthracene moieties. J Phys Chem B 115:7606–7611

    Article  CAS  Google Scholar 

  47. Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41:3878–3896

    Article  CAS  Google Scholar 

  48. Zhang X, Chi Z, Li H, Xu B, Li X, Zhou W, Liu S, Zhang Y, Xu J (2011) Piezofluorochromism of an aggregation-induced emission compound derived from tetraphenylethylene. Chem Asian J 6:808–811

    Article  CAS  Google Scholar 

  49. Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537

    Article  CAS  Google Scholar 

  50. Hirata S (2017) Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv Opt Mater 5:1700116

    Article  Google Scholar 

  51. Baldo MA, O’brien DF, You Y, Shoustiko A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  CAS  Google Scholar 

  52. Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524

    Article  CAS  Google Scholar 

  53. Wahadoszamen M, Hamada T, Iimori T, Nakabayashi T, Ohta N (2007) External electric field effects on absorption, fluorescence, and phosphorescence spectra of diphenylpolyynes in a polymer film. J Phys Chem A 111:9544–9552

    Article  CAS  Google Scholar 

  54. Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ (2010) Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C 114:6090–6099

    Article  CAS  Google Scholar 

  55. Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K (2017) Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv Mater 29:1606665

    Article  Google Scholar 

  56. An Z, Zheng C, Yao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W (2015) Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater 14:685–690

    Article  CAS  Google Scholar 

  57. Xu S, Chen R, Zhen C, Huang W (2016) Excited state modulation for organic afterglow: materials and applications. Adv Mater 28:9920–9940

    Article  CAS  Google Scholar 

  58. Kabe R, Adachi C (2017) Organic long persistent luminescence. Nature 550:384–387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Saran, U.V., Liu, B. (2019). Nanocrystals with Crystallization-Induced or Enhanced Emission. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_11

Download citation

Publish with us

Policies and ethics