Skip to main content

AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications

  • Chapter
  • First Online:
Book cover Principles and Applications of Aggregation-Induced Emission

Abstract

Ultra-small metal nanoclusters (NCs) have unique electronic, optical, and chemical properties which make them attractive for many practical applications. A significant amount research has focused on luminescent metal NCs, especially on the design, fabrication, and mechanistic understanding of their luminescence properties. In this chapter, we first briefly discuss the luminescence fundamentals of well-defined metal NCs, particularly how the metallic core, ligand shell, and the redox state of the metal atoms at the core/shell influence their luminescence. Following that, we describe the impact of recently discovered aggregation-induced emission (AIE) phenomenon on the design of highly luminescent metal NCs. Examples of a series of recently reported AIE-type metal NCs along with some particular application of interest have been summarized. The findings discussed in this chapter may form a basis for further understanding, engineering, and controlling the luminescence mechanism of these novel AIE-type metal NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    CAS  Google Scholar 

  2. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  3. Talapin DV, Shevchenko EV (2016) Introduction: nanoparticle chemistry. Chem Rev 116:10343–10345

    CAS  Google Scholar 

  4. Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C 112:18303–18313

    CAS  Google Scholar 

  5. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    CAS  Google Scholar 

  6. Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549–1565

    CAS  Google Scholar 

  7. Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J (2016) Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett 7:962–975

    CAS  Google Scholar 

  8. Goswami N, Lin F, Liu Y, Leong DT, Xie J (2016) Highly luminescent thiolated gold nanoclusters impregnated in nanogel. Chem Mater 28:4009–4016

    CAS  Google Scholar 

  9. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413

    CAS  Google Scholar 

  10. Stamplecoskie KG, Kamat PV (2014) Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J Am Chem Soc 136:11093–11099

    CAS  Google Scholar 

  11. Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490–2492

    CAS  Google Scholar 

  12. Goswami N, Yao Q, Chen T, Xie J (2016) Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coord Chem Rev 329:1–15

    CAS  Google Scholar 

  13. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479

    CAS  Google Scholar 

  14. Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117:8208–8271

    CAS  Google Scholar 

  15. Goswami N, Luo Z, Yuan X, Leong DT, Xie J (2017) Engineering gold-based radiosensitizers for cancer radiotherapy. Mater Horiz 4:817–831

    CAS  Google Scholar 

  16. Zhang X-D, Luo Z, Chen J, Shen X, Song S, Sun Y, Fan S, Fan F, Leong DT, Xie J (2014) Ultrasmall Au10−12(SG)10−12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater 26:4565–4568

    CAS  Google Scholar 

  17. Zhang X-D, Luo Z, Chen J, Song S, Yuan X, Shen X, Wang H, Sun Y, Gao K, Zhang L, Fan S, Leong DT, Guo M, Xie J (2015) Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 5:8669

    CAS  Google Scholar 

  18. Zhang X-D, Chen J, Luo Z, Wu D, Shen X, Song S-S, Sun Y-M, Liu P-X, Zhao J, Huo S, Fan S, Fan F, Liang X-J, Xie J (2014) Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv Healthc Mater 3:133–141

    CAS  Google Scholar 

  19. Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, Qian H, Wang H, Jin R (2012) Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small 8:2028–2035

    CAS  Google Scholar 

  20. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758

    CAS  Google Scholar 

  21. Wang S, Meng X, Das A, Li T, Song Y, Cao T, Zhu X, Zhu M, Jin R (2014) A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: the 13 th silver atom matters. Angew Chem Int Ed 53:2376–2380

    CAS  Google Scholar 

  22. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    CAS  Google Scholar 

  23. Chen T, Yang S, Chai J, Song Y, Fan J, Rao B, Sheng H, Yu H, Zhu M (2017) Crystallization-induced emission enhancement: a novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci Adv 3:e1700956

    Google Scholar 

  24. Kang X, Wang S, Song Y, Jin S, Sun G, Yu H, Zhu M (2016) Bimetallic Au2Cu6 nanoclusters: strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew Chem Int Ed 55:3611–3614

    CAS  Google Scholar 

  25. Wang J, Goswami N, Shu T, Su L, Zhang X (2018) pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(i)-thiolate shell. Mater Chem Front 2:923–928

    CAS  Google Scholar 

  26. Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910

    CAS  Google Scholar 

  27. Fedrigo S, Harbich W, Buttet J (1993) Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. J Chem Phys 99:5712–5717

    CAS  Google Scholar 

  28. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4:4073–4083

    CAS  Google Scholar 

  29. Bigioni TP, Whetten RL, Dag Ö (2000) Near-infrared luminescence from small gold nanocrystals. J Phys Chem B 104:6983–6986

    CAS  Google Scholar 

  30. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:077402

    Google Scholar 

  31. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    CAS  Google Scholar 

  32. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431

    CAS  Google Scholar 

  33. Weerawardene KLDM, Aikens CM (2018) Origin of Photoluminescence of Ag25(SR)18– nanoparticles: ligand and doping effect. J Phys Chem C 122:2440–2447

    CAS  Google Scholar 

  34. Chen Y, Yang T, Pan H, Yuan Y, Chen L, Liu M, Zhang K, Zhang S, Wu P, Xu J (2014) Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal–metal charge transfer vs strong coupling between surface plasmon and emitters. J Am Chem Soc 136:1686–1689

    CAS  Google Scholar 

  35. Kim A, Zeng C, Zhou M, Jin R (2017) Surface engineering of Au36(SR)24 nanoclusters for photoluminescence enhancement. Part Part Syst Charact 34:1600388

    Google Scholar 

  36. Yu H, Rao B, Jiang W, Yang S, Zhu M (2017) The photoluminescent metal nanoclusters with atomic precision. Coord Chem Rev;https://doi.org/10.1016/j.ccr.2017.12.005

    CAS  Google Scholar 

  37. Deng H-H, Shi X-Q, Wang F-F, Peng H-P, Liu A-L, Xia X-H, Chen W (2017) Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition. Chem Mater 29:1362–1369

    CAS  Google Scholar 

  38. Li D, Chen Z, Mei X (2017) Fluorescence enhancement for noble metal nanoclusters. Adv Colloid Interface Sci 250:25–39

    CAS  Google Scholar 

  39. Wang G, Huang T, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127:812–813

    CAS  Google Scholar 

  40. Wang G, Guo R, Kalyuzhny G, Choi J-P, Murray RW (2006) NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J Phys Chem B 110:20282–20289

    CAS  Google Scholar 

  41. Aikens CM (2011) Electronic structure of ligand-passivated gold and silver nanoclusters. J Phys Chem Lett 2:99–104

    CAS  Google Scholar 

  42. Chang H-Y, Chang H-T, Hung Y-L, Hsiung T-M, Lin Y-W, Huang C-C (2013) Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv 3:4588–4597

    CAS  Google Scholar 

  43. Tseng Y-T, Yuan Z, Yang Y-Y, Huang C-C, Chang H-T (2014) Photoluminescent gold nanodots: role of the accessing ligands. RSC Adv 4:33629–33635

    CAS  Google Scholar 

  44. Crawford SE, Andolina CM, Smith AM, Marbella LE, Johnston KA, Straney PJ, Hartmann MJ, Millstone JE (2015) Ligand-mediated “turn on,” high quantum yield near-infrared emission in small gold nanoparticles. J Am Chem Soc 137:14423–14429

    CAS  Google Scholar 

  45. Zhou C, Sun C, Yu M, Qin Y, Wang J, Kim M, Zheng J (2010) Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J Phys Chem C 114:7727–7732

    CAS  Google Scholar 

  46. Jiang J, Conroy CV, Kvetny MM, Lake GJ, Padelford JW, Ahuja T, Wang G (2014) Oxidation at the core–ligand interface of Au lipoic acid nanoclusters that enhances the near-IR luminescence. J Phys Chem C 118:20680–20687

    CAS  Google Scholar 

  47. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 0:1740–1741

    Google Scholar 

  48. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    CAS  Google Scholar 

  49. Hu R, Lager E, Aguilar-Aguilar A, Liu J, Lam JWY, Sung HHY, Williams ID, Zhong Y, Wong KS, Peña-Cabrera E, Tang BZ (2009) Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J Phys Chem C 113:15845–15853

    CAS  Google Scholar 

  50. Ding D, Li K, Liu B, Tang BZ (2013) Bioprobes based on AIE fluorogens. Acc Chem Res 46:2441–2453

    CAS  Google Scholar 

  51. Hu R, Leung NLC, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43:4494–4562

    CAS  Google Scholar 

  52. Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ (2010) Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv Mater 22:2159–2163

    CAS  Google Scholar 

  53. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    CAS  Google Scholar 

  54. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 0:4332–4353

    Google Scholar 

  55. Leung CWT, Hong Y, Chen S, Zhao E, Lam JWY, Tang BZ (2013) A photostable AIE luminogen for specific mitochondrial imaging and tracking. J Am Chem Soc 135:62–65

    CAS  Google Scholar 

  56. Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015) Biosensing by luminogens with aggregation-induced emission characteristics. Chem Soc Rev 44:4228–4238

    CAS  Google Scholar 

  57. Yuan Y, Zhang C-J, Gao M, Zhang R, Tang BZ, Liu B (2015) Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem Int Ed 54:1780–1786

    CAS  Google Scholar 

  58. Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z (2015) White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew Chem Int Ed 54:7181–7184

    CAS  Google Scholar 

  59. Dong YQ, Lam JWY, Tang BZ (2015) Mechanochromic luminescence of aggregation-induced emission luminogens. J Phys Chem Lett 6:3429–3436

    CAS  Google Scholar 

  60. Xu B, He J, Mu Y, Zhu Q, Wu S, Wang Y, Zhang Y, Jin C, Lo C, Chi Z, Lien A, Liu S, Xu J (2015) Very bright mechanoluminescence and remarkable mechanochromism using a tetraphenylethene derivative with aggregation-induced emission. Chem Sci 6:3236–3241

    CAS  Google Scholar 

  61. Hu Q, Gao M, Feng G, Liu B (2014) Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew Chem Int Ed 53:14225–14229

    CAS  Google Scholar 

  62. Qin W, Yang Z, Jiang Y, Lam JWY, Liang G, Kwok HS, Tang BZ (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27:3892–3901

    CAS  Google Scholar 

  63. Chen Z, Zhang J, Song M, Yin J, Yu G-A, Liu SH (2015) A novel fluorene-based aggregation-induced emission (AIE)-active gold(i) complex with crystallization-induced emission enhancement (CIEE) and reversible mechanochromism characteristics. Chem Commun 51:326–329

    CAS  Google Scholar 

  64. Zhang X, Zhang X, Tao L, Chi Z, Xu J, Wei Y (2014) Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J Mater Chem B 2:4398–4414

    CAS  Google Scholar 

  65. Li K, Qin W, Ding D, Tomczak N, Geng J, Liu R, Liu J, Zhang X, Liu H, Liu B, Tang BZ (2013) Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep 3:1150

    Google Scholar 

  66. Liang J, Kwok RTK, Shi H, Tang BZ, Liu B (2013) Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl Mater Interfaces 5:8784–8789

    CAS  Google Scholar 

  67. Li K, Zhu Z, Cai P, Liu R, Tomczak N, Ding D, Liu J, Qin W, Zhao Z, Hu Y, Chen X, Tang BZ, Liu B (2013) Organic dots with aggregation-induced emission (AIE Dots) characteristics for dual-color cell tracing. Chem Mater 25:4181–4187

    CAS  Google Scholar 

  68. Feng G, Tay CY, Chui QX, Liu R, Tomczak N, Liu J, Tang BZ, Leong DT, Liu B (2014) Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials 35:8669–8677

    CAS  Google Scholar 

  69. Zhang C-J, Hu Q, Feng G, Zhang R, Yuan Y, Lu X, Liu B (2015) Image-guided combination chemotherapy and photodynamic therapy using a mitochondria-targeted molecular probe with aggregation-induced emission characteristics. Chem Sci 6:4580–4586

    CAS  Google Scholar 

  70. Xu S, Yuan Y, Cai X, Zhang C-J, Hu F, Liang J, Zhang G, Zhang D, Liu B (2015) Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem Sci 6:5824–5830

    CAS  Google Scholar 

  71. Yuning H (2016) Aggregation-induced emission—fluorophores and applications. Methods Appl Fluoresc 4:022003

    Google Scholar 

  72. Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym Mater 19:249

    CAS  Google Scholar 

  73. Chen J, Xie Z, Lam JWY, Law CCW, Tang BZ (2003) Silole-containing polyacetylenes. synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation. Macromolecules 36:1108–1117

    CAS  Google Scholar 

  74. Li Z, Dong YQ, Lam JWY, Sun J, Qin A, Häußler M, Dong YP, Sung HHY, Williams ID, Kwok HS, Tang BZ (2009) Functionalized siloles: versatile synthesis, aggregation-induced emission, and sensory and device applications. Adv Funct Mater 19:905–917

    CAS  Google Scholar 

  75. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26:5429–5479

    CAS  Google Scholar 

  76. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J (2012) From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J Am Chem Soc 134:16662–16670

    CAS  Google Scholar 

  77. Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, D-e J, Xie J (2014) Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc 136:1246–1249

    CAS  Google Scholar 

  78. Wang Z, Xiong Y, Kershaw SV, Chen B, Yang X, Goswami N, Lai W-F, Xie J, Rogach AL (2017) In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films. Chem Mater 29:10206–10211

    CAS  Google Scholar 

  79. Chang H-C, Chang Y-F, Fan N-C, Ho J-aA (2014) Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. ACS Appl Mater Interfaces 6:18824–18831

    CAS  Google Scholar 

  80. Zhang J, Yuan Y, Liang G, Arshad MN, Albar HA, Sobahi TR, Yu S-H (2015) A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chem Commun 51:10539–10542

    CAS  Google Scholar 

  81. Zheng K, Yuan X, Kuah K, Luo Z, Yao Q, Zhang Q, Xie J (2015) Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chem Commun 51:15165–15168

    CAS  Google Scholar 

  82. Ganguly M, Pal A, Negishi Y, Pal T (2013) Synthesis of highly fluorescent silver clusters on gold(I) surface. Langmuir 29:2033–2043

    CAS  Google Scholar 

  83. Jia X, Yang X, Li J, Li D, Wang E (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50:237–239

    CAS  Google Scholar 

  84. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270

    CAS  Google Scholar 

  85. Yu Y, Li J, Chen T, Tan YN, Xie J (2015) Decoupling the CO-reduction protocol to generate luminescent Au22(SR)18 nanocluster. J Phys Chem C 119:10910–10918

    CAS  Google Scholar 

  86. Gan Z, Lin Y, Luo L, Han G, Liu W, Liu Z, Yao C, Weng L, Liao L, Chen J, Liu X, Luo Y, Wang C, Wei S, Wu Z (2016) Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel. Angew Chem Int Ed 55:11567–11571

    CAS  Google Scholar 

  87. Wang W-X, Wu Y, Li H-W (2017) Regulation on the aggregation-induced emission (AIE) of DNA-templated silver nanoclusters by BSA and its hydrolysates. J Colloid Interface Sci 505:577–584

    CAS  Google Scholar 

  88. Qu F, Dou LL, Li NB, Luo HQ (2013) Solvatofluorochromism of polyethyleneimine-encapsulated Ag nanoclusters and their concentration-dependent fluorescence. J Mater Chem C 1:4008–4013

    CAS  Google Scholar 

  89. Feng L, Sun Z, Liu H, Liu M, Jiang Y, Fan C, Cai Y, Zhang S, Xu J, Wang H (2017) Silver nanoclusters with enhanced fluorescence and specific ion recognition capability triggered by alcohol solvents: a highly selective fluorimetric strategy for detecting iodide ions in urine. Chem Commun 53:9466–9469

    CAS  Google Scholar 

  90. Bhavitha KB, Nair AK, Perumbilavil S, Joseph S, Kala MS, Saha A, Narayanan RA, Hameed N, Thomas S, Oluwafemi OS, Kalarikkal N (2017) Investigating solvent effects on aggregation behaviour, linear and nonlinear optical properties of silver nanoclusters. Opt Mater 73:695–705

    CAS  Google Scholar 

  91. Yang T, Dai S, Yang S, Chen L, Liu P, Dong K, Zhou J, Chen Y, Pan H, Zhang S, Chen J, Zhang K, Wu P, Xu J (2017) Interfacial clustering-triggered fluorescence–phosphorescence dual solvoluminescence of metal nanoclusters. J Phys Chem Lett 8:3980–3985

    CAS  Google Scholar 

  92. Sugiuchi M, Maeba J, Okubo N, Iwamura M, Nozaki K, Konishi K (2017) Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J Am Chem Soc 139:17731–17734

    CAS  Google Scholar 

  93. Dou X, Yuan X, Yu Y, Luo Z, Yao Q, Leong DT, Xie J (2014) Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 6:157–161

    CAS  Google Scholar 

  94. Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J Am Chem Soc 137:8244–8250

    CAS  Google Scholar 

  95. Tian R, Zhang S, Li M, Zhou Y, Lu B, Yan D, Wei M, Evans DG, Duan X (2015) Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater 25:5006–5015

    CAS  Google Scholar 

  96. Li B, Wang X, Shen X, Zhu W, Xu L, Zhou X (2016) Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions. J Colloid Interface Sci 467:90–96

    CAS  Google Scholar 

  97. Tang C, Feng H, Huang Y, Qian Z (2017) Reversible luminescent nanoswitches based on aggregation-induced emission enhancement of silver nanoclusters for luminescence turn-on assay of inorganic pyrophosphatase activity. Anal Chem 89:4994–5002

    CAS  Google Scholar 

  98. Pyo K, Ly NH, Yoon SY, Shen Y, Choi SY, Lee SY, Joo S-W, Lee D (2017) Highly luminescent folate-functionalized Au22 Nanoclusters for Bioimaging. Adv Healthc Mater 6:1700203

    Google Scholar 

  99. Wu X, Li L, Zhang L, Wang T, Wang C, Su Z (2015) Multifunctional spherical gold nanocluster aggregate@polyacrylic acid@mesoporous silica nanoparticles for combined cancer dual-modal imaging and chemo-therapy. J Mater Chem B 3:2421–2425

    CAS  Google Scholar 

  100. Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X (2016) Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 10:2591–2599

    CAS  Google Scholar 

  101. Cao F, Ju E, Liu C, Li W, Zhang Y, Dong K, Liu Z, Ren J, Qu X (2017) Encapsulation of aggregated gold nanoclusters in a metal-organic framework for real-time monitoring of drug release. Nanoscale 9:4128–4134

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuvasri, G.S., Goswami, N., Xie, J. (2019). AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_10

Download citation

Publish with us

Policies and ethics