Skip to main content

Application of Novel Carbonaceous Materials as Support for Fuel Cell Electrocatalysts

  • Chapter
  • First Online:
Advanced Electrocatalysts for Low-Temperature Fuel Cells

Abstract

Low-temperature fuel cells are potential candidates in alternative energy industry due to their high energy efficiencies and near zero emissions. Typically, carbon supported Pt-based materials are used as electrocatalysts for anode and cathode reactions in low-temperature fuel cells. Carbon black (CB) is the most commonly employed support material for Pt-based electrocatalysts. However, CB materials suffer from significant drawbacks such as poor corrosion resistance and limited mass transport of fuels to active catalyst sites. As an alternative to conventional CB support materials, carbon structures such as graphene, ordered mesoporous carbon, and the so-called green carbon have been successfully used in recent years as supports for the dispersion of fuel cell catalyst nanoparticles. This chapter briefly describes the newly developed carbonaceous nanostructures and their applications in low-temperature fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007

    Article  CAS  Google Scholar 

  2. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853

    Article  CAS  Google Scholar 

  3. Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG (2016) Advances in stationary and portable fuel cell applications. Int J Hydrog Energy 41(37):16509–16522

    Article  CAS  Google Scholar 

  4. O’Hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. Wiley, Hoboken

    Book  Google Scholar 

  5. Dicks AL, Rand DAJ (2018) Fuel cell systems explained. Wiley, New York

    Book  Google Scholar 

  6. Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160

    Article  CAS  PubMed  Google Scholar 

  7. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  8. Basri S, Kamarudin SK, Daud WRW, Yaakub Z (2010) Nanocatalyst for direct methanol fuel cell (DMFC). Int J Hydrog Energy 35(15):7957–7970

    Article  CAS  Google Scholar 

  9. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2(18):6266–6291

    Article  CAS  Google Scholar 

  10. Bharti A, Cheruvally G (2017) Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. J Power Sources 360:196–205

    Article  CAS  Google Scholar 

  11. Yuan X, Ding X-L, Wang C-Y, Ma Z-F (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6(4):1105–1124

    Article  CAS  Google Scholar 

  12. Xu JB, Zhao TS (2013) Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells. RSC Adv 3(1):16–24

    Article  CAS  Google Scholar 

  13. Antolini E (2016) Nitrogen-doped carbons by sustainable N-and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew Sust Energ Rev 58:34–51

    Article  CAS  Google Scholar 

  14. Dhakate SR, Chauhan N, Sharma S, Tawale J, Singh S, Sahare PD, Mathur RB (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49(6):1946–1954

    Article  CAS  Google Scholar 

  15. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  PubMed  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  17. Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Randviir EP, Brownson DAC, Banks CE (2014) A decade of graphene research: production, applications and outlook. Mater Today 17(9):426–432

    Article  CAS  Google Scholar 

  19. Zhong YL, Tian Z, Simon GP, Li D (2015) Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18(2):73–78

    Article  CAS  Google Scholar 

  20. Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97

    Article  CAS  Google Scholar 

  21. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51

    Article  CAS  PubMed  Google Scholar 

  22. Selvakumar D, Tripathi SK, Singh R, Nasim M (2007) Solvo-thermal preparation of cadmium telluride nanoparticles from a novel single source molecular precursor. Chem Lett 37(1):34–35

    Article  CAS  Google Scholar 

  23. Das S, Sudhagar P, Kang YS, Choi W (2014) Graphene synthesis and application for solar cells. J Mater Res 29(3):299–319

    Article  CAS  Google Scholar 

  24. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715

    Article  CAS  Google Scholar 

  25. Van Noorden R (2012) Production: beyond sticky tape. Nature 483:S32. https://doi.org/10.1038/483S32a

    Article  CAS  PubMed  Google Scholar 

  26. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  CAS  Google Scholar 

  27. Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625–19628

    Article  CAS  Google Scholar 

  29. Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322

    Article  CAS  Google Scholar 

  30. Wu W, Liu Z, Jauregui LA, Yu Q, Pillai R, Cao H, Bao J, Chen YP, Pei S-S (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensor Actuat B Chem 150(1):296–300

    Article  CAS  Google Scholar 

  31. Van Nang L, Kim E-T (2012) Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition. J Electrochem Soc 159(4):K93–K96

    Article  CAS  Google Scholar 

  32. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328–2333

    Article  CAS  Google Scholar 

  33. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  34. Iqbal MZ, Abdala AA (2013) Thermally reduced graphene: synthesis, characterization and dye removal applications. RSC Adv 3(46):24455–24464

    Article  CAS  Google Scholar 

  35. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Eur J Inorg Chem 31(2):1481–1487

    CAS  Google Scholar 

  36. Choi SM, Seo MH, Kim HJ, Kim WB (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49(3):904–909

    Article  CAS  Google Scholar 

  37. Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20(39):8467–8469

    Article  CAS  Google Scholar 

  38. Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8(5):4720–4729

    Article  CAS  PubMed  Google Scholar 

  39. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B Environ 123:52–68

    Article  CAS  Google Scholar 

  40. Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  CAS  PubMed  Google Scholar 

  41. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  42. Ramachandran R, Saranya M, Velmurugan V, Raghupathy BPC, Jeong SK, Grace AN (2015) Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications. Appl Energy 153:22–31

    Article  CAS  Google Scholar 

  43. Sridhar V, Jeon J-H, Oh I-K (2010) Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48(10):2953–2957

    Article  CAS  Google Scholar 

  44. Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3(4):1127–1133

    Article  CAS  PubMed  Google Scholar 

  45. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434

    Article  CAS  Google Scholar 

  46. Alanyalıoğlu M, Segura JJ, Oro-Sole J, Casan-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152

    Article  CAS  Google Scholar 

  47. Wang G, Wang B, Park J, Wang Y, Sun B, Yao J (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47(14):3242–3246

    Article  CAS  Google Scholar 

  48. Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350

    Article  CAS  Google Scholar 

  49. Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem Commun 11(4):846–849

    Article  CAS  Google Scholar 

  50. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117

    Article  CAS  Google Scholar 

  51. Hsieh SH, Hsu MC, Liu WL, Chen WJ (2013) Study of Pt catalyst on graphene and its application to fuel cell. Appl Surf Sci 277:223–230

    Article  CAS  Google Scholar 

  52. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26(3):233–238

    Article  CAS  Google Scholar 

  53. Bharti A, Cheruvally G, Muliankeezhu S (2017) Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application. Int J Hydrog Energy 42(16):11622–11631

    Article  CAS  Google Scholar 

  54. Zhao L, Wang Z-B, Li J-L, Zhang J-J, Sui X-L, Zhang L-M (2015) A newly-designed sandwich-structured graphene–Pt–graphene catalyst with improved electrocatalytic performance for fuel cells. J Mater Chem A 3(10):5313–5320

    Article  CAS  Google Scholar 

  55. Pullamsetty A, Sundara R (2016) Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium. J Colloid Interface Sci 479:260–270

    Article  CAS  PubMed  Google Scholar 

  56. Pullamsetty A, Subbiah M, Sundara R (2015) Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Int J Hydrog Energy 40(32):10251–10261

    Article  CAS  Google Scholar 

  57. Oztuna FES, Barim SB, Bozbag SE, Yu H, Aindow M, Unal U, Erkey C (2017) Graphene aerogel supported Pt electrocatalysts for oxygen reduction reaction by supercritical deposition. Electrochim Acta 250:174–184

    Article  CAS  Google Scholar 

  58. Daş E, Gürsel SA, Şanli LI, Yurtcan AB (2016) Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. Int J Hydrog Energy 41(23):9755–9761

    Article  CAS  Google Scholar 

  59. Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195(15):4628–4633

    Article  CAS  Google Scholar 

  60. Zhu J, Xiao M, Zhao X, Liu C, Ge J, Xing W (2015) Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy 13:318–326

    Article  CAS  Google Scholar 

  61. Guo S, Dong S, Wang E (2009) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1):547–555

    Article  CAS  Google Scholar 

  62. Jafri RI, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2015) Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int J Hydrog Energy 40(12):4337–4348

    Article  CAS  Google Scholar 

  63. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746

    Article  CAS  Google Scholar 

  64. Eftekhari A, Fan Z (2017) Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater Chem Front 1(6):1001–1027

    Article  CAS  Google Scholar 

  65. Ambrosio EP, Francia C, Manzoli M, Penazzi N, Spinelli P (2008) Platinum catalyst supported on mesoporous carbon for PEMFC. Int J Hydrog Energy 33(12):3142–3145

    Article  CAS  Google Scholar 

  66. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13(9):677–681

    Article  CAS  Google Scholar 

  67. Ryoo R, Joo SH (2004) Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Stud Surf Sci Catal 148:241–260

    Article  CAS  Google Scholar 

  68. Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14(4):478–486

    Article  CAS  Google Scholar 

  69. Yang H, Zhao D (2005) Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 15(12):1217–1231

    CAS  Google Scholar 

  70. Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805

    Article  CAS  Google Scholar 

  71. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  72. Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17(30):3078–3088

    Article  CAS  Google Scholar 

  73. Xu W, Wu Z, Tao S (2016) Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. J Mater Chem A 4(42):16272–16287

    Article  CAS  Google Scholar 

  74. Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 42(9):4054–4070

    Article  CAS  PubMed  Google Scholar 

  75. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88(1–2):1–24

    CAS  Google Scholar 

  76. Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48(10):2690–2707

    Article  CAS  Google Scholar 

  77. Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47(20):3696–3717

    Article  CAS  PubMed  Google Scholar 

  78. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843):169

    Article  CAS  PubMed  Google Scholar 

  79. Li Z, Jaroniec M (2001) Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J Am Chem Soc 123(37):9208–9209

    Article  CAS  PubMed  Google Scholar 

  80. Li Z, Jaroniec M (2001) Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile. Carbon 39(13):2080–2082

    Article  CAS  Google Scholar 

  81. Li Z, Jaroniec M (2003) Synthesis and adsorption properties of colloid-imprinted carbons with surface and volume mesoporosity. Chem Mater 15(6):1327–1333

    Article  CAS  Google Scholar 

  82. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713

    Article  CAS  Google Scholar 

  83. Banham D, Feng F, Burt J, Alsrayheen E, Birss V (2010) Bimodal, templated mesoporous carbons for capacitor applications. Carbon 48(4):1056–1063

    Article  CAS  Google Scholar 

  84. Kim CH, Lee D-K, Pinnavaia TJ (2004) Graphitic mesostructured carbon prepared from aromatic precursors. Langmuir 20(13):5157–5159

    Article  CAS  PubMed  Google Scholar 

  85. Banham D, Feng F, Pei K, Ye S, Birss V (2013) Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. J Mater Chem A 1(8):2812–2820

    Article  CAS  Google Scholar 

  86. Zhai Y, Wan Y, Cheng Y, Shi Y, Zhang F, Tu B, Zhao D (2008) The influence of carbon source on the wall structure of ordered mesoporous carbons. J Porous Mater 15(5):601–611

    Article  CAS  Google Scholar 

  87. Li X, Forouzandeh F, Fürstenhaupt T, Banham D, Feng F, Ye S, Kwok DY, Birss V (2018) New insights into the surface properties of hard-templated ordered mesoporous carbons. Carbon 127:707–717

    Article  CAS  Google Scholar 

  88. Lei Z, Xiao Y, Dang L, Lu M, You W (2006) Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous Mesoporous Mater 96(1–3):127–134

    Article  CAS  Google Scholar 

  89. Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22(11):3433–3440

    Article  CAS  Google Scholar 

  90. Li Y, Yang Y, Shi J, Ruan M (2008) Synthesis and characterization of hollow mesoporous carbon spheres with a highly ordered bicontinuous cubic mesostructure. Microporous Mesoporous Mater 112(1–3):597–602

    Article  CAS  Google Scholar 

  91. Gierszal KP, Jaroniec M (2006) Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc 128(31):10026–10027

    Article  CAS  PubMed  Google Scholar 

  92. Chuenchom L, Kraehnert R, Smarsly BM (2012) Recent progress in soft-templating of porous carbon materials. Soft Matter 8(42):10801–10812

    Article  CAS  Google Scholar 

  93. Wang Q, Zhang W, Mu Y, Zhong L, Meng Y, Sun Y (2014) Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method. Microporous Mesoporous Mater 197:109–115

    Article  CAS  Google Scholar 

  94. de Aa Soler-Illia GJ, Crepaldi EL, Grosso D, Sanchez C (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8(1):109–126

    Article  CAS  Google Scholar 

  95. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860

    Article  CAS  PubMed  Google Scholar 

  96. Wan Y, Shi Y, Zhao D (2007) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20(3):932–945

    Article  CAS  Google Scholar 

  97. Ma T-Y, Liu L, Yuan Z-Y (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42(9):3977–4003

    Article  CAS  PubMed  Google Scholar 

  98. Zhang F, Meng Y, Gu D, Yan Y, Chen Z, Tu B, Zhao D (2006) An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem Mater 18(22):5279–5288

    Article  CAS  Google Scholar 

  99. Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed Engl 117(43):7215–7221

    Article  Google Scholar 

  100. Hillmyer MA, Bates FS, Almdal K, Mortensen K, Ryan AJ, Fairclough JPA (1996) Complex phase behavior in solvent-free nonionic surfactants. Science 271(5251):976–978

    Article  CAS  Google Scholar 

  101. Bucknall DG, Anderson HL (2003) Polymers get organized. Science 302(5652):1904–1905

    Article  CAS  PubMed  Google Scholar 

  102. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20(3):682–737

    Article  CAS  Google Scholar 

  103. Liang C, Hong K, Guiochon GA, Mays JW, Dai S (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed Engl 43(43):5785–5789

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Commun (16):2125–2127

    Google Scholar 

  105. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic− organic self-assembly. Chem Mater 18(18):4447–4464

    Article  CAS  Google Scholar 

  106. Wang Y, He C, Brouzgou A, Liang Y, Fu R, Wu D, Tsiakaras P, Song S (2012) A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation. J Power Sources 200:8–13

    Article  CAS  Google Scholar 

  107. Zhao G, Zhao TS, Xu J, Lin Z, Yan X (2017) Impact of pore size of ordered mesoporous carbon FDU-15-supported platinum catalysts on oxygen reduction reaction. Int J Hydrog Energy 42(5):3325–3334

    Article  CAS  Google Scholar 

  108. Wan Y, Shi Y, Zhao D (2007) Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun (9):897–926

    Google Scholar 

  109. Yu C, Fan J, Tian B, Stucky GD, Zhao D (2003) Synthesis of mesoporous silica from commercial poly (ethylene oxide)/poly (butylene oxide) copolymers: toward the rational design of ordered mesoporous materials. J Phys Chem B 107(48):13368–13375

    Article  CAS  Google Scholar 

  110. Wan Y, Shi Y, Zhao D (2008) Ordered mesoporous polymers and carbon molecular sieves. Chem Mater 20:932–945

    Article  CAS  Google Scholar 

  111. Deng Y, Yu T, Wan Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly (ethylene oxide)-b-polystyrene. J Am Chem Soc 129(6):1690–1697

    Article  CAS  PubMed  Google Scholar 

  112. Deng Y, Liu C, Gu D, Yu T, Tu B, Zhao D (2008) Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. J Mater Chem 18(1):91–97

    Article  CAS  Google Scholar 

  113. Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1(6):16023

    Article  CAS  Google Scholar 

  114. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155(2):95–110

    Article  CAS  Google Scholar 

  115. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1(1):27–40

    Article  CAS  Google Scholar 

  116. Tang J, Liu J, Torad NL, Kimura T, Yamauchi Y (2014) Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9(3):305–323

    Article  CAS  Google Scholar 

  117. Guha A, Lu W, Zawodzinski TA Jr, Schiraldi DA (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon 45(7):1506–1517

    Article  CAS  Google Scholar 

  118. Salgado JRC, Quintana JJ, Calvillo L, Lázaro MJ, Cabot PL, Esparbé I, Pastor E (2008) Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: the influence of functionalization of the support. Phys Chem Chem Phys 10(45):6796–6806

    Article  CAS  PubMed  Google Scholar 

  119. Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A (2015) Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7(2):1170–1179

    Article  CAS  PubMed  Google Scholar 

  120. Xiao C, Chen X, Fan Z, Liang J, Zhang B, Ding S (2016) Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction. Nanotechnology 27(44):445402

    Article  CAS  PubMed  Google Scholar 

  121. Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2(4):286

    Article  CAS  PubMed  Google Scholar 

  122. Zhou J-H, He J-P, Ji Y-J, Dang W-J, Liu X-L, Zhao G-W, Zhang C-X, Zhao J-S, Fu Q-B, Hu H-P (2007) CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochim Acta 52(14):4691–4695

    Article  CAS  Google Scholar 

  123. Li F, Wang H, Zhao X, Li B, Zhang Y (2016) Microwave-assisted route for the preparation of Pd anchored on surfactant functionalized ordered mesoporous carbon and its electrochemical applications. RSC Adv 6(75):70810–70815

    Article  CAS  Google Scholar 

  124. Zhang Y, Bo X, Luhana C, Guo L (2011) Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites. Electrochim Acta 56(17):5849–5854

    Article  CAS  Google Scholar 

  125. Momčilović M, Stojmenović M, Gavrilov N, Pašti I, Mentus S, Babić B (2014) Complex electrochemical investigation of ordered mesoporous carbon synthesized by soft-templating method: charge storage and electrocatalytical or Pt-electrocatalyst supporting behavior. Electrochim Acta 125:606–614

    Article  CAS  Google Scholar 

  126. Cao J, Chen Z, Xu J, Wang W, Chen Z (2013) Mesoporous carbon synthesized from dual colloidal silica/block copolymer template approach as the support of platinum nanoparticles for direct methanol fuel cells. Electrochim Acta 88:184–192

    Article  CAS  Google Scholar 

  127. Zhang C, Xu L, Shan N, Sun T, Chen J, Yan Y (2014) Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal 4(6):1926–1930

    Article  CAS  Google Scholar 

  128. Joo SH, Kwon K, You DJ, Pak C, Chang H, Kim JM (2009) Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions. Electrochim Acta 54(24):5746–5753

    Article  CAS  Google Scholar 

  129. Joo SH, Lee HI, You DJ, Kwon K, Kim JH, Choi YS, Kang M, Kim JM, Pak C, Chang H (2008) Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon 46(15):2034–2045

    Article  CAS  Google Scholar 

  130. Ahn C-Y, Cheon J-Y, Joo S-H, Kim J (2013) Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. J Power Sources 222:477–482

    Article  CAS  Google Scholar 

  131. Kim N-I, Cheon JY, Kim JH, Seong J, Park J-Y, Joo SH, Kwon K (2014) Impact of framework structure of ordered mesoporous carbons on the performance of supported Pt catalysts for oxygen reduction reaction. Carbon 72:354–364

    Article  CAS  Google Scholar 

  132. Calvillo L, Lázaro MJ, García-Bordejé E, Moliner R, Cabot PL, Esparbé I, Pastor E, Quintana JJ (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169(1):59–64

    Article  CAS  Google Scholar 

  133. Morales-Acosta D, Rodríguez-Varela FJ, Benavides R (2016) Template-free synthesis of ordered mesoporous carbon: application as support of highly active Pt nanoparticles for the oxidation of organic fuels. Int J Hydrog Energy 41(5):3387–3398

    Article  CAS  Google Scholar 

  134. Samiee L, Shoghi F, Maghsodi A (2014) In situ functionalisation of mesoporous carbon electrodes with carbon nanotubes for proton exchange membrane fuel-cell application. Mater Chem Phys 143(3):1228–1235

    Article  CAS  Google Scholar 

  135. Nsabimana A, Bo X, Zhang Y, Li M, Han C, Guo L (2014) Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. J Colloid Interface Sci 428:133–140

    Article  CAS  PubMed  Google Scholar 

  136. Song P, Zhu L, Bo X, Wang A, Wang G, Guo L (2014) Pt nanoparticles incorporated into phosphorus-doped ordered mesoporous carbons: enhanced catalytic activity for methanol electrooxidation. Electrochim Acta 127:307–314

    Article  CAS  Google Scholar 

  137. Bruno MM, Petruccelli MA, Viva FA, Corti HR (2013) Mesoporous carbon supported PtRu as anode catalyst for direct methanol fuel cell: polarization measurements and electrochemical impedance analysis of mass transport. Int J Hydrog Energy 38(10):4116–4123

    Article  CAS  Google Scholar 

  138. Hung C-T, Liou Z-H, Veerakumar P, Wu P-H, Liu T-C, Liu S-B (2016) Ordered mesoporous carbon supported bifunctional PtM (M= Ru, Fe, Mo) electrocatalysts for a fuel cell anode. Chin J Catal 37(1):43–53

    Article  CAS  Google Scholar 

  139. Volotskova O, Levchenko I, Shashurin A, Raitses Y, Ostrikov K, Keidar M (2010) Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. Nanoscale 2(10):2281–2285

    Article  CAS  PubMed  Google Scholar 

  140. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  CAS  PubMed  Google Scholar 

  141. Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822

    Article  Google Scholar 

  142. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1(3):356–361

    Article  CAS  Google Scholar 

  143. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285

    Article  CAS  PubMed  Google Scholar 

  144. Falco C, Baccile N, Titirici M-M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13(11):3273–3281

    Article  CAS  Google Scholar 

  145. Fellinger TP, White RJ, Titirici MM, Antonietti M (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Funct Mater 22(15):3254–3260

    Article  CAS  Google Scholar 

  146. Liu X, Antonietti M (2014) Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69:460–466

    Article  CAS  Google Scholar 

  147. Xiao Y, Dong H, Lei B, Qiu H, Liu Y, Zheng M (2015) Ordered mesoporous carbons with fiber-and rod-like morphologies for supercapacitor electrode materials. Mater Lett 138:37–40

    Article  CAS  Google Scholar 

  148. Ting C-C, Wu H-Y, Vetrivel S, Saikia D, Pan Y-C, Fey GTK, Kao H-M (2010) A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic–inorganic self-assembly of triblock copolymer, sucrose and silica. Microporous Mesoporous Mater 128(1–3):1–11

    Article  CAS  Google Scholar 

  149. Sivadas DL, Vijayan S, Rajeev R, Ninan KN, Prabhakaran K (2016) Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon 109:7–18

    Article  CAS  Google Scholar 

  150. Yu L, Brun N, Sakaushi K, Eckert J, Titirici MM (2013) Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries. Carbon 61:245–253

    Article  CAS  Google Scholar 

  151. Yu L, Falco C, Weber J, White RJ, Howe JY, Titirici M-M (2012) Carbohydrate-derived hydrothermal carbons: a thorough characterization study. Langmuir 28(33):12373–12383

    Article  CAS  PubMed  Google Scholar 

  152. Wu Z-Y, Liang H-W, Chen L-F, Hu B-C, Yu S-H (2015) Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res 49(1):96–105

    Article  CAS  PubMed  Google Scholar 

  153. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466

    Article  CAS  PubMed  Google Scholar 

  154. Liu Q, Chen C, Pan F, Zhang J (2015) Highly efficient oxygen reduction on porous nitrogen-doped nanocarbons directly synthesized from cellulose nanocrystals and urea. Electrochim Acta 170:234–241

    Article  CAS  Google Scholar 

  155. Li S, Xu W, Cheng P, Luo J, Zhou D, Li J, Li R, Yuan D (2017) Bacterial cellulose derived iron and phosphorus co-doped carbon nanofibers as an efficient oxygen reduction reaction electrocatalysts. Synth Met 223:137–144

    Article  CAS  Google Scholar 

  156. Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376

    Article  CAS  Google Scholar 

  157. Lai F, Miao YE, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244

    Article  CAS  PubMed  Google Scholar 

  158. Mulyadi A, Zhang Z, Dutzer M, Liu W, Deng Y (2017) Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. Nano Energy 32:336–346

    Article  CAS  Google Scholar 

  159. Wu Z-Y, Liang H-W, Li C, Hu B-C, Xu X-X, Wang Q, Chen J-F, Yu S-H (2014) Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res 7(12):1861–1872

    Article  CAS  Google Scholar 

  160. Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211

    Article  CAS  Google Scholar 

  161. Sun Y, Wang X, Ding C, Cheng W, Chen C, Hayat T, Alsaedi A, Hu J, Wang X (2016) Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain Chem Eng 4(9):4608–4616

    Article  CAS  Google Scholar 

  162. Wu Z-Y, Hu B-C, Wu P, Liang H-W, Yu Z-L, Lin Y, Zheng Y-R, Li Z, Yu S-H (2016) Mo 2 C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. NPG Asia Mater 8(7):e288

    Article  CAS  Google Scholar 

  163. Rybarczyk MK, Gontarek E, Lieder M, Titirici M-M (2018) Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost. Appl Surf Sci 435:543–551

    Article  CAS  Google Scholar 

  164. Kucinska A, Golembiewski R, Lukaszewicz JP (2014) Synthesis of N-rich activated carbons from chitosan by chemical activation. Sci Adv Mater 6(2):290–297

    Article  CAS  Google Scholar 

  165. Wang Y-Y, Hou B-H, Lü H-Y, Wan F, Wang J, Wu X-L (2015) Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv 5(118):97427–97434

    Article  CAS  Google Scholar 

  166. Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7(12):4095–4103

    Article  CAS  Google Scholar 

  167. Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S (2015) Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7(14):6136–6142

    Article  CAS  PubMed  Google Scholar 

  168. Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086

    Article  CAS  Google Scholar 

  169. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3(35):18154–18162

    Article  CAS  Google Scholar 

  170. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    Article  CAS  Google Scholar 

  171. Song H, Li H, Wang H, Key J, Ji S, Mao X, Wang R (2014) Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta 147:520–526

    Article  CAS  Google Scholar 

  172. Wang R, Wang K, Wang Z, Song H, Wang H, Ji S (2015) Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources 297:295–301

    Article  CAS  Google Scholar 

  173. Fang Y, Wang H, Yu H, Peng F (2016) From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon flocs: an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 213:273–282

    Article  CAS  Google Scholar 

  174. Gao A, Guo N, Yan M, Li M, Wang F, Yang R (2018) Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption. Microporous Mesoporous Mater 260:172–179

    Article  CAS  Google Scholar 

  175. Guo C, Liao W, Li Z, Chen C (2015) Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 85:279–288

    Article  CAS  Google Scholar 

  176. Wang H, Wang K, Song H, Li H, Ji S, Wang Z, Li S, Wang R (2015) N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Adv 5(60):48965–48970

    Article  CAS  Google Scholar 

  177. Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238

    Article  CAS  Google Scholar 

  178. Wu H, Geng J, Ge H, Guo Z, Wang Y, Zheng G (2016) Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv Energy Mater 6(20):1600794, 1–8

    Article  CAS  Google Scholar 

  179. Lu Y, Zhu N, Yin F, Yang T, Wu P, Dang Z, Liu M, Wei X (2017) Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosens Bioelectron 98:350–356

    Article  CAS  PubMed  Google Scholar 

  180. Shao Z, Zhang W, An D, Zhang G, Wang Y (2015) Pyrolyzed egg yolk as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. RSC Adv 5(118):97508–97511

    Article  CAS  Google Scholar 

  181. Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13):2625–2636

    Article  CAS  PubMed  Google Scholar 

  182. Zhao Z-Q, Xiao P-W, Zhao L, Liu Y, Han B-H (2015) Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption. RSC Adv 5(90):73980–73988

    Article  CAS  Google Scholar 

  183. Liu X, Zhou W, Yang L, Li L, Zhang Z, Ke Y, Chen S (2015) Correction: nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions. J Mater Chem A 3(18):10135–10135

    Article  CAS  Google Scholar 

  184. Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S, Qi X, Wei Z (2015) Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J Am Chem Soc 137(16):5414–5420

    Article  CAS  PubMed  Google Scholar 

  185. Liang J, Du X, Gibson C, Du XW, Qiao SZ (2013) N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 25(43):6226–6231

    Article  CAS  PubMed  Google Scholar 

  186. Gong X, Liu S, Ouyang C, Strasser P, Yang R (2015) Nitrogen-and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal 5(2):920–927

    Article  CAS  Google Scholar 

  187. Ye D, Wang L, Zhang R, Liu B, Wang Y, Kong J (2015) Facile preparation of N-doped mesocellular graphene foam from sludge flocs for highly efficient oxygen reduction reaction. J Mater Chem A 3(29):15171–15176

    Article  CAS  Google Scholar 

  188. Zhou T, Wang H, Ji S, Linkov V, Wang R (2014) Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources 248:427–433

    Article  CAS  Google Scholar 

  189. Zhou T, Wang H, Ji S, Feng H, Wang R (2014) Synthesis of mesoporous carbon from okara and application as electrocatalyst support. Fuel Cells 14(2):296–302

    Article  CAS  Google Scholar 

  190. Zhao X, Zhu J, Liang L, Li C, Liu C, Liao J, Xing W (2014) Biomass-derived N-doped carbon and its application in electrocatalysis. Appl Catal B Environ 154–155:177–182

    Article  CAS  Google Scholar 

  191. Yan Z, Zhang M, Xie J, Wang H, Wei W (2013) Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction. J Power Sources 243:48–53

    Article  CAS  Google Scholar 

  192. Cheng K, Kou Z, Zhang J, Jiang M, Wu H, Hu L, Yang X, Pan M, Mu S (2015) Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. J Mater Chem A 3(26):14007–14014

    Article  CAS  Google Scholar 

  193. Liu H, Cao Y, Wang F, Zhang W, Huang Y (2014) Pig bone derived hierarchical porous carbon-supported platinum nanoparticles with superior electrocatalytic activity towards oxygen reduction reaction. Electroanalysis 26(8):1831–1839

    Article  CAS  Google Scholar 

  194. Cheng Y, Lu H, Zhang K, Yang F, Dai W, Liu C, Dong H, Zhang X (2018) Fabricating Pt-decorated three dimensional N-doped carbon porous microspherical cavity catalyst for advanced oxygen reduction reaction. Carbon 128:38–45

    Article  CAS  Google Scholar 

  195. Yang R, Qiu X, Zhang H, Li J, Zhu W, Wang Z, Huang X, Chen L (2005) Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 43(1):11–16

    Article  CAS  Google Scholar 

  196. Afraz A, Rafati AA, Hajian A, Khoshnood M (2015) Electrodeposition of Pt nanoparticles on new porous graphitic carbon nanostructures prepared from biomass for fuel cell and methanol sensing applications. Electrocatalysis 6(2):220–228

    Article  CAS  Google Scholar 

  197. Yang H, Wang H, Ji S, Ma Y, Linkov V, Wang R (2014) Nanostructured Pt supported on cocoon-derived carbon as an efficient electrocatalyst for methanol oxidation. J Solid State Chem 18(6):1503–1512

    CAS  Google Scholar 

  198. Lobos MLN, Sieben JM, Comignani V, Duarte M, Volpe MA, Moyano EL (2016) Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol. Int J Hydrog Energy 41(25):10695–10706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Director, VSSC and Deputy Director, PCM, VSSC for granting permission to publish this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, A., Cheruvally, G. (2018). Application of Novel Carbonaceous Materials as Support for Fuel Cell Electrocatalysts. In: Rodríguez-Varela, F., Napporn, T. (eds) Advanced Electrocatalysts for Low-Temperature Fuel Cells . Springer, Cham. https://doi.org/10.1007/978-3-319-99019-4_5

Download citation

Publish with us

Policies and ethics